Part Number Hot Search : 
F12C05 HAT1055R M67749 S3P7235 CLL5244B 00GB12 KBPC1 2900A1
Product Description
Full Text Search
 

To Download M30620ECFP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Description
The M16C/62 group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications. The M16C/62 group includes a wide range of products with different internal memory types and sizes and various package types.
Features
* Memory capacity .................................. ROM (See Figure 1.1.4. ROM Expansion) RAM 3K to 20K bytes * Shortest instruction execution time ...... 62.5ns (f(XIN)=16MHZ, VCC=5V) 100ns (f(XIN)=10MHZ, VCC=3V, with software one-wait) : Mask ROM, flash memory 5V version 142.9ns (f(XIN)=7MHZ, VCC=3V, with software one-wait) : One-time PROM version * Supply voltage ..................................... 4.2 to 5.5V (f(XIN)=16MHZ, without software wait) : Mask ROM, flash memory 5V version 4.5 to 5.5V (f(XIN)=16MHZ, without software wait) : One-time PROM version 2.7 to 5.5V (f(XIN)=10MHZ with software one-wait) : Mask ROM, flash memory 5V version 2.7 to 5.5V (f(XIN)=7MHZ with software one-wait) : One-time PROM version * Low power consumption ...................... 25.5mW ( f(XIN)=10MHZ, with software one-wait, VCC = 3V) * Interrupts .............................................. 25 internal and 8 external interrupt sources, 4 software interrupt sources; 7 levels (including key input interrupt) * Multifunction 16-bit timer ...................... 5 output timers + 6 input timers * Serial I/O .............................................. 5 channels (3 for UART or clock synchronous, 2 for clock synchronous) * DMAC .................................................. 2 channels (trigger: 24 sources) * A-D converter ....................................... 10 bits X 8 channels (Expandable up to 10 channels) * D-A converter ....................................... 8 bits X 2 channels * CRC calculation circuit ......................... 1 circuit * Watchdog timer .................................... 1 line * Programmable I/O ............................... 87 lines _______ * Input port .............................................. 1 line (P85 shared with NMI pin) * Memory expansion .............................. Available (to 1.2M bytes or 4M bytes) * Chip select output ................................ 4 lines * Clock generating circuit ....................... 2 built-in clock generation circuits (built-in feedback resistor, and external ceramic or quartz oscillator)
Applications
Audio, cameras, office equipment, communications equipment, portable equipment
------Table of Contents-----Central Processing Unit (CPU) ..................... 11 Reset ............................................................. 14 Processor Mode ............................................ 27 Clock Generating Circuit ............................... 40 Protection ...................................................... 49 Interrupts ....................................................... 50 Watchdog Timer ............................................ 70 DMAC ........................................................... 72 Timer ............................................................. 82 Serial I/O ..................................................... 112 A-D Converter ............................................. 152 D-A Converter ............................................. 162 CRC Calculation Circuit .............................. 164 Programmable I/O Ports ............................. 166 Electrical characteristic ............................... 181 Flash memory version ................................. 234
1
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pin Configuration
Figures 1.1.1 and 1.1.2 show the pin configurations (top view).
PIN CONFIGURATION (top view)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P10/D8 P11/D9 P12/D10 P13/D11 P14/D12 P15/D13/INT3 P16/D14/INT4 P17/D15/INT5 P20/A0(/D0/-) P21/A1(/D1/D0) P22/A2(/D2/D1) P23/A3(/D3/D2) P24/A4(/D4/D3) P25/A5(/D5/D4) P26/A6(/D6/D5) P27/A7(/D7/D6) Vss P30/A8(/-/D7) Vcc P31/A9 P32/A10 P33/A11 P34/A12 P35/A13 P36/A14 P37/A15 P40/A16 P41/A17 P42/A18 P43/A19
P07/D7 P06/D6 P05/D5 P04/D4 P03/D3 P02/D2 P01/D1 P00/D0 P107/AN7/KI3 P106/AN6/KI2 P105/AN5/KI1 P104/AN4/KI0 P103/AN3 P102/AN2 P101/AN1 AVSS P100/AN0 VREF AVcc P97/ADTRG/SIN4
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 23 45
M16C/62 Group
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31
P44/CS0 P45/CS1 P46/CS2 P47/CS3 P50/WRL/WR P51/WRH/BHE P52/RD P53/BCLK P54/HLDA P55/HOLD P56/ALE P57/RDY/CLKOUT P60/CTS0/RTS0 P61/CLK0 P62/RxD0 P63/TXD0 P64/CTS1/RTS1/CTS0/CLKS1 P65/CLK1 P66/RxD1 P67/TXD1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
P96/ANEX1/SOUT4 P95/ANEX0/CLK4 P94/DA1/TB4IN P93/DA0/TB3IN P92/TB2IN/SOUT3 P91/TB1IN/SIN3 P90/TB0IN/CLK3 BYTE CNVss P87/XCIN P86/XCOUT RESET XOUT VSS XIN VCC P85/NMI P84/INT2 P83/INT1 P82/INT0 P81/TA4IN/U P80/TA4OUT/U P77/TA3IN P76/TA3OUT P75/TA2IN/W P74/TA2OUT/W P73/CTS2/RTS2/TA1IN/V P72/CLK2/TA1OUT/V P71/RxD2/SCL/TA0IN/TB5IN P70/TXD2/SDA/TA0OUT
Package: 100P6S-A
Figure 1.1.1. Pin configuration (top view)
2
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PIN CONFIGURATION (top view)
P13/D11 P14/D12 P15/D13/INT3 P16/D14/INT4 P17/D15/INT5 P20/A0(/D0/-) P21/A1(/D1/D0) P22/A2(/D2/D1) P23/A3(/D3/D2) P24/A4(/D4/D3) P25/A5(/D5/D4) P26/A6(/D6/D5) P27/A7(/D7/D6) Vss P30/A8(/-/D7) Vcc P31/A9 P32/A10 P33/A11 P34/A12 P35/A13 P36/A14 P37/A15 P40/A16 P41/A17
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P12/D10 P11/D9 P10/D8 P07/D7 P06/D6 P05/D5 P04/D4 P03/D3 P02/D2 P01/D1 P00/D0 P107/AN7/KI3 P106/AN6/KI2 P105/AN5/KI1 P104/AN4/KI0 P103/AN3 P102/AN2 P101/AN1 AVSS P100/AN0 VREF AVcc P97/ADTRG/SIN4 P96/ANEX1/SOUT4 P95/ANEX0/CLK4
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 12
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 34567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
M16C/62 Group
P42/A18 P43/A19 P44/CS0 P45/CS1 P46/CS2 P47/CS3 P50/WRL/WR P51/WRH/BHE P52/RD P53/BCLK P54/HLDA P55/HOLD P56/ALE P57/RDY/CLKOUT P60/CTS0/RTS0 P61/CLK0 P62/RxD0 P63/TXD0 P64/CTS1/RTS1/CTS0/CLKS1 P65/CLK1 P66/RxD1 P67/TXD1 P70/TXD2/SDA/TA0OUT P71/RxD2/SCL/TA0IN/TB5IN P72/CLK2/TA1OUT/V
P94/DA1/TB4IN P93/DA0/TB3IN P92/TB2IN/SOUT3 P91/TB1IN/SIN3 P90/TB0IN/CLK3 BYTE CNVss P87/XCIN P86/XCOUT RESET XOUT VSS XIN VCC P85/NMI P84/INT2 P83/INT1 P82/INT0 P81/TA4IN/U P80/TA4OUT/U P77/TA3IN P76/TA3OUT P75/TA2IN/W P74/TA2OUT/W P73/CTS2/RTS2/TA1IN/V
Package: 100P6Q-A
Figure 1.1.2. Pin configuration (top view)
3
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Block Diagram
Figure 1.1.3 is a block diagram of the M16C/62 group.
Block diagram of the M16C/62 group
8
8
8
8
8
8
8
I/O ports
Port P0
Port P1
Port P2
Port P3
Port P4
Port P5
Port P6
Port P7
Internal peripheral functions
Timer Timer TA0 (16 bits) Timer TA1 (16 bits) Timer TA2 (16 bits) Timer TA3 (16 bits) Timer TA4 (16 bits) Timer TB0 (16 bits) Timer TB1 (16 bits) Timer TB2 (16 bits) Timer TB3 (16 bits) Timer TB4 (16 bits) Timer TB5 (16 bits)
A-D converter
(10 bits X 8 channels
Expandable up to 10 channels)
System clock generator XIN-XOUT XCIN-XCOUT
Clock synchronous SI/O
8
Port P8
UART/clock synchronous SI/O
(8 bits X 3 channels)
CRC arithmetic circuit (CCITT ) (Polynomial : X16+X12+X5+1)
(8 bits X 2 channels)
7
Port P85
M16C/60 series16-bit CPU core
Registers Program counter PC Vector table INTB Stack pointer ISP USP Flag register FLG R0H R0L R0H R0L R1H R1L R1H R1L R2 R2 R3 R3 A0 A0 A1 A1 FB FB SB
Memory
ROM (Note 1) RAM (Note 2)
Watchdog timer
(15 bits)
Port P9
8
DMAC
(2 channels)
Port P10
D-A converter
(8 bits X 2 channels)
Multiplier
8
Note 1: ROM size depends on MCU type. Note 2: RAM size depends on MCU type.
Figure 1.1.3. Block diagram of M16C/62 group
4
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Performance Outline
Table 1.1.1 is a performance outline of M16C/62 group. Table 1.1.1. Performance outline of M16C/62 group Item Number of basic instructions Shortest instruction execution time Performance 91 instructions 62.5ns(f(XIN)=16MHZ, VCC=5V) 100ns (f(XIN)=10MHZ, VCC=3V, with software one-wait) : Mask ROM, flash memory 5V version 142.9ns (f(XIN)=7MHZ, VCC=3V, with software one-wait) : One-time PROM version (See the figure 1.1.4. ROM Expansion) 3K to 20K bytes 8 bits x 10, 7 bits x 1 1 bit x 1 16 bits x 5
Memory capacity I/O port Input port Multifunction timer Serial I/O
ROM RAM P0 to P10 (except P85) P85 TA0, TA1, TA2, TA3, TA4
TB0, TB1, TB2, TB3, TB4, TB5 16 bits x 6 UART0, UART1, UART2 (UART or clock synchronous) x 3 SI/O3, SI/O4 (Clock synchronous) x 2 A-D converter 10 bits x (8 + 2) channels D-A converter 8 bits x 2 DMAC 2 channels (trigger: 24 sources) CRC calculation circuit CRC-CCITT Watchdog timer 15 bits x 1 (with prescaler) Interrupt 25 internal and 8 external sources, 4 software sources, 7 levels Clock generating circuit 2 built-in clock generation circuits (built-in feedback resistor, and external ceramic or quartz oscillator) Supply voltage 4.2 to 5.5V (f(XIN)=16MHZ, without software wait) : Mask ROM, flash memory 5V version 4.5 to 5.5V (f(XIN)=16MHZ, without software wait) : One-time PROM version 2.7 to 5.5V (f(XIN)=10MHZ with software one-wait) : Mask ROM, flash memory 5V version 2.7 to 5.5V (f(XIN)=7MHZ with software one-wait) : One-time PROM version Power consumption 25.5mW (f(XIN) = 10MHZ, VCC=3V with software one-wait) I/O I/O withstand voltage 5V characteristics Output current 5mA Memory expansion Available (to 1.2M bytes or 4M bytes) Device configuration CMOS high performance silicon gate Package 100-pin plastic mold QFP
5
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Mitsubishi plans to release the following products in the M16C/62 group: (1) Support for mask ROM version, external ROM version, one-time PROM version, EPROM version, and Flash memory version (2) ROM capacity (3) Package 100P6S-A : Plastic molded QFP (mask ROM, one-time PROM, and flash memory versions) 100P6Q-A : Plastic molded QFP(mask ROM, one-time PROM, and flash memory versions) 100D0 : Ceramic LCC (EPROM version)
ROM Size (Byte) External ROM 256K 128K 96K 64K 32K M30624MG-XXXFP/GP M30620MC-XXXFP/GP M30622MC-XXXFP/GP M30620ECFP/GP M30620MA-XXXFP/GP M30622MA-XXXFP/GP M30620M8-XXXFP/GP M30622M8-XXXFP/GP M30622M4-XXXFP/GP Mask ROM version One-time PROM version EPROM version Flash memory version External ROM version M30620ECFS M30624FGFP/GP M30624FGLFP/GP M30620SFP/GP M30622SFP/GP
Figure 1.1.4. ROM expansion The M16C/62 group products currently supported are listed in Table 1.1.2. Table 1.1.2. M16C/62 group November. 1999
Type No M30622M4-XXXFP M30622M4-XXXGP M30620M8-XXXFP M30620M8-XXXGP M30622M8-XXXFP M30622M8-XXXGP M30620MA-XXXFP M30620MA-XXXGP M30622MA-XXXFP M30622MA-XXXGP M30620MC-XXXFP M30620MC-XXXGP M30622MC-XXXFP M30622MC-XXXGP M30624MG-XXXFP M30624MG-XXXGP M30620ECFP M30620ECGP M30620ECFS M30624FGFP M30624FGGP M30624FGLFP M30624FGLGP M30620SFP M30620SGP M30622SFP M30622SGP 10K byte 3K byte 256K byte 20K byte 128K byte 128K byte 256K byte 256K byte 128K byte 5K byte 20K byte 10K byte 96K byte 5K byte 64K byte 4K byte 10K byte ROM capacity 32K byte RAM capacity 3K byte 10K byte Package type 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100D0 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A External ROM version One-time PROM version EPROM version (Note) Flash memory 5V version Flash memory 3V version mask ROM version Remarks
10K byte 10K byte 20K byte
Note: Do not use the EPROM version for mass production, because it is a tool for program development (for evaluation).
6
Mitsubishi microcomputers
M16C / 62 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Type No.
M30622 M 8 - XXX FP
Package type: FP : Package GP : FS : 100P6S-A 100P6Q-A 100D0
ROM No. Omitted for blank one-time PROM version,and EPROM version, and flash memory version ROM capacity: 4 : 32K bytes 8 : 64K bytes A : 96K bytes C : 128K bytes G: 256K bytes
Memory type: M : Mask ROM version E : EPROM or one-time PROM version S : External ROM version F : Flash memory version Shows RAM capacity, pin count, etc (The value itself has no specific meaning) M16C/62 Group M16C Family
Figure 1.1.5. Type No., memory size, and package
7
Mitsubishi microcomputers
M16C / 62 Group
Pin Description
Pin Description
Pin name VCC, VSS CNVSS Signal name Power supply input CNVSS Input I/O type
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Function Supply 2.7 to 5.5 V to the VCC pin. Supply 0 V to the VSS pin. This pin switches between processor modes. Connect this pin to the VSS pin when after a reset you want to start operation in single-chip mode (memory expansion mode) or the VCC pin when starting operation in microprocessor mode. A "L" on this input resets the microcomputer. These pins are provided for the main clock generating circuit.Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open. This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". Connect this pin to the VSS pin when not using external data bus. This pin is a power supply input for the A-D converter. Connect this pin to VCC. This pin is a power supply input for the A-D converter. Connect this pin to VSS.
RESET XIN XOUT
Reset input Clock input Clock output
Input Input Output
BYTE
External data bus width select input Analog power supply input Analog power supply input Reference voltage input I/O port P0
Input
AVCC AVSS
VREF P00 to P07
Input Input/output
This pin is a reference voltage input for the A-D converter. This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. When used for input in single-chip mode, the port can be set to have or not have a pull-up resistor in units of four bits by software. In memory expansion and microprocessor modes, selection of the internal pull-resistor is not available. When set as a separate bus, these pins input and output data (D0-D7). This is an 8-bit I/O port equivalent to P0. Pins in this port also function as external interrupt pins as selected by software. When set as a separate bus, these pins input and output data (D8-D15). This is an 8-bit I/O port equivalent to P0. These pins output 8 low-order address bits (A0-A7). If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (D0-D7) and output 8 low-order address bits (A0-A7) separated in time by multiplexing. If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D0-D6) and output address (A1-A7) separated in time by multiplexing. They also output address (A0). This is an 8-bit I/O port equivalent to P0. These pins output 8 middle-order address bits (A8-A15). If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9-A15). This is an 8-bit I/O port equivalent to P0. These pins output CS0-CS3 signals and A16-A19. CS0-CS3 are chip select signals used to specify an access space. A16-A19 are 4 highorder address bits.
D0 to D7 P10 to P17 I/O port P1
Input/output Input/output
D8 to D15 P20 to P27 A0 to A7 A0/D0 to A7/D7 A0, A1/D0 to A7/D6 I/O port P2
Input/output Input/output Output Input/output
Output Input/output
P30 to P37 A8 to A15 A8/D7, A9 to A15 P40 to P47 CS0 to CS3, A16 to A19
I/O port P3
Input/output Output Input/output Output
I/O port P4
Input/output Output Output
8
Mitsubishi microcomputers
M16C / 62 Group
Pin Description
Pin Description
Pin name P50 to P57 Signal name I/O port P5 I/O type Input/output
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Function This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by software. Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selected With a 16-bit external data bus, data is written to even addresses when the WRL signal is "L" and to the odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the address. While the input level of the RDY pin is "L", the microcomputer is in the ready state. This is an 8-bit I/O port equivalent to P0. When used for input in singlechip, memory expansion, and microprocessor modes, the port can be set to have or not have a pull-up resistor in units of four bits by software. Pins in this port also function as UART0 and UART1 I/O pins as selected by software. This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N channel open-drain output). Pins in this port also function as timer A0-A3, timer B5 or UART2 I/O pins as selected by software. P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from "H" to "L". The NMI function cannot be cancelled using software. The pull-up cannot be set for this pin. This is an 8-bit I/O port equivalent to P6. Pins in this port also function as SI/O3, 4 I/O pins, Timer B0-B4 input pins, D-A converter output pins, A-D converter extended input pins, or A-D trigger input pins as selected by software. This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P104-P107 also function as input pins for the key input interrupt function.
WRL / WR, WRH / BHE, RD, BCLK, HLDA, HOLD, ALE, RDY
Output Output Output Output Output Input Output Input
P60 to P67
I/O port P6
Input/output
P70 to P77
I/O port P7
Input/output
P80 to P84, P86, P87, P85
I/O port P8
Input/output Input/output Input/output
I/O port P85
Input
P90 to P97
I/O port P9
Input/output
P100 to P107
I/O port P10
Input/output
9
Mitsubishi microcomputers
M16C / 62 Group
Memory
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Operation of Functional Blocks
The M16C/62 group accommodates certain units in a single chip. These units include ROM and RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit, A-D converter, and I/O ports. The following explains each unit.
Memory
Figure 1.4.1 is a memory map of the M16C/62 group. The address space extends the 1M bytes from address 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30622MC-XXXFP, there is 128K bytes of internal ROM from E000016 to FFFFF16. The vector table for fixed interrupts such as the _______ reset and NMI are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details. From 0040016 up is RAM. For example, in the M30622MC-XXXFP, 5K bytes of internal RAM is mapped to the space from 0040016 to 017FF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated. The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Figures 1.7.1 to 1.7.3 are location of peripheral unit control registers. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes. The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps. In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used. For example, in the M30622MC-XXXFP, the following spaces cannot be used. * The space between 0180016 and 03FFF16 (Memory expansion and microprocessor modes) * The space between D000016 and D7FFF16 (Memory expansion mode)
0000016
SFR area For details, see Figures 1.7.1 to 1.7.3 FFE0016
0040016
Internal RAM area
XXXXX16
Internal reserved area (Note 1)
Special page vector table
0400016
External area
FFFDC16
Undefined instruction
Overflow
BRK instruction Address match Single step Watchdog timer DBC NMI Reset
D000016
Type No. M30622M4 M30620M8 M30620MA M30620MC/EC M30622M8/E8 M30622MA M30622MC M30624MG/FG Address XXXXX16 00FFF16 02BFF16 02BFF16 02BFF16 013FF16 017FF16 017FF16 053FF16 Address YYYYY16 F800016 F000016 E800016 E000016 F000016 E800016 E000016 C000016
Internal reserved area (Note 2)
YYYYY16
Internal ROM area
FFFFF16 FFFFF16
Note 1: During memory expansion and microprocessor modes, can not be used. Note 2: In memory expansion mode, can not be used. Note 3: These memory maps show an instance in which PM13 is set to 0; but in the case of M30624MG/FG, they show an instance in which PM13 is set to 1.
Figure 1.4.1. Memory map
10
Mitsubishi microcomputers
M16C / 62 Group
CPU
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Central Processing Unit (CPU)
The CPU has a total of 13 registers shown in Figure 1.5.1. Seven of these registers (R0, R1, R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.
b15
b8 b7
b0
R0(Note)
H
L
b15
b8 b7
b0
b19
b0
R1(Note)
H
L Data registers
PC
Program counter
b15
b0
b19
b0
R2(Note)
INTB
H
L
Interrupt table register
b0
b15
b0
b15
R3(Note)
USP
User stack pointer
b15
b0
b15
b0
A0(Note) Address registers
ISP
Interrupt stack pointer
b15
b0
b15
b0
A1(Note)
SB
Static base register
b15
b0
b15
b0
FB(Note)
Frame base registers
FLG
Flag register
IPL
U
I OBS Z DC
Note: These registers consist of two register banks.
Figure 1.5.1. Central processing unit register
(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations. Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).
(2) Address registers (A0 and A1)
Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).
11
Mitsubishi microcomputers
M16C / 62 Group
CPU (3) Frame base register (FB)
Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(4) Program counter (PC)
Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.
(5) Interrupt table register (INTB)
Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector table.
(6) Stack pointer (USP/ISP)
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at the position of bit 7 in the flag register (FLG).
(7) Static base register (SB)
Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.
(8) Flag register (FLG)
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.5.2 shows the flag register (FLG). The following explains the function of each flag: * Bit 0: Carry flag (C flag) This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit. * Bit 1: Debug flag (D flag) This flag enables a single-step interrupt. When this flag is "1", a single-step interrupt is generated after instruction execution. This flag is cleared to "0" when the interrupt is acknowledged. * Bit 2: Zero flag (Z flag) This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, cleared to "0". * Bit 3: Sign flag (S flag) This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, cleared to "0". * Bit 4: Register bank select flag (B flag) This flag chooses a register bank. Register bank 0 is selected when this flag is "0" ; register bank 1 is selected when this flag is "1". * Bit 5: Overflow flag (O flag) This flag is set to "1" when an arithmetic operation resulted in overflow; otherwise, cleared to "0". * Bit 6: Interrupt enable flag (I flag) This flag enables a maskable interrupt. An interrupt is disabled when this flag is "0", and is enabled when this flag is "1". This flag is cleared to "0" when the interrupt is acknowledged.
12
Mitsubishi microcomputers
M16C / 62 Group
CPU
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Bit 7: Stack pointer select flag (U flag) Interrupt stack pointer (ISP) is selected when this flag is "0" ; user stack pointer (USP) is selected when this flag is "1". This flag is cleared to "0" when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed. * Bits 8 to 11: Reserved area * Bits 12 to 14: Processor interrupt priority level (IPL) Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7. If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled. * Bit 15: Reserved area The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.
b15
b0
IPL
U
I
OBSZDC
Flag register (FLG)
Carry flag Debug flag Zero flag Sign flag Register bank select flag Overflow flag Interrupt enable flag Stack pointer select flag Reserved area Processor interrupt priority level Reserved area
Figure 1.5.2. Flag register (FLG)
13
Mitsubishi microcomputers
M16C / 62 Group
Reset Reset
There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains on hardware resets. When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level "L" (0.2VCC max.) for at least 20 cycles. When the reset pin level is then returned to the "H" level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table. Figure 1.6.1 shows the example reset circuit. Figure 1.6.2 shows the reset sequence.
5V 4.0V VCC 0V 5V RESET 0.8V 0V
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RESET
VCC
Example when VCC = 5V.
Figure 1.6.1. Example reset circuit
XIN More than 20 cycles are needed Microprocessor mode BYTE = "H" RESET BCLK 24cycles
BCLK Content of reset vector Address FFFFC16 FFFFD16 FFFFE16
RD
WR
CS0 Microprocessor mode BYTE = "L" Address FFFFC16 FFFFE16
Content of reset vector
RD
WR
CS0 Single chip mode Address FFFFC16 FFFFE16 Content of reset vector
Figure 1.6.2. Reset sequence
14
Mitsubishi microcomputers
M16C / 62 Group
Reset
____________
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.6.1 shows the statuses of the other pins while the RESET pin level is "L". Figures 1.6.3 and 1.6.4 show the internal status of the microcomputer immediately after the reset is cancelled.
____________
Table 1.6.1. Pin status when RESET pin level is "L"
Status Pin name
P0 P1 P2, P3, P40 to P43 P44 P45 to P47 CNVSS = VCC CNVSS = VSS BYTE = VSS Input port (floating) Input port (floating) Input port (floating) Input port (floating) Input port (floating) Data input (floating) Data input (floating) Address output (undefined) CS0 output ("H" level is output) Input port (floating) (pull-up resistor is on) WR output ("H" level is output) BHE output (undefined) RD output ("H" level is output) BCLK output BYTE = VCC Data input (floating) Input port (floating) Address output (undefined) CS0 output ("H" level is output) Input port (floating) (pull-up resistor is on) WR output ("H" level is output) BHE output (undefined) RD output ("H" level is output) BCLK output
P50 P51 P52 P53 P54
Input port (floating) Input port (floating) Input port (floating) Input port (floating) Input port (floating)
HLDA output (The output value HLDA output (The output value depends on the input to the depends on the input to the HOLD pin) HOLD pin) HOLD input (floating) ALE output ("L" level is output) RDY input (floating) Input port (floating) HOLD input (floating) ALE output ("L" level is output) RDY input (floating) Input port (floating)
P55 P56 P57
Input port (floating) Input port (floating) Input port (floating)
P6, P7, P80 to P84, P86, P87, P9, P10 Input port (floating)
15
Mitsubishi microcomputers
M16C / 62 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) Processor mode register 0 (Note) (2) Processor mode register 1 (3) System clock control register 0 (4) System clock control register 1 (5) Chip select control register (6) Address match interrupt enable register (7) Protect register (8) Data bank register (9) Watchdog timer control register (10) Address match interrupt register 0
(000416)***
0016 0
(29) UART1 transmit interrupt control register (30) UART1 receive interrupt control register (31) Timer A0 interrupt control register (32) Timer A1 interrupt control register (33) Timer A2 interrupt control register (34) Timer A3 interrupt control register (35) Timer A4 interrupt control register (36) Timer B0 interrupt control register (37) Timer B1 interrupt control register (38) Timer B2 interrupt control register (39) INT0 interrupt control register (40) INT1 interrupt control register (41) INT2 interrupt control register (42) Timer B3,4,5 count start flag (43) Three-phase PWM control register 0 (44) Three-phase PWM control register 1 (45) Three-phase output buffer register 0 (46) Three-phase output buffer register 1 (47) Timer B3 mode register (48) Timer B4 mode register (49) Timer B5 mode register (50) Interrupt cause select register (51) SI/O3 control register (52) SI/O4 control register (53) UART2 special mode register 2 (54) UART2 special mode register (55) UART2 transmit/receive mode register (56) UART2 transmit/receive control register 0 (57) UART2 transmit/receive control register 1
(005316)*** (005416)*** (005516)*** (005616)*** (005716)*** (005816)*** (005916)*** (005A16)*** (005B16)*** (005C16)*** (005D16)*** (005E16)*** (005F16)***
?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000 00?000 00?000 00?000
(000516)*** 0 0 0 0 0
(000616)*** 0 1 0 0 1 0 0 0 (000716)*** 0 0 1 0 0 0 0 0 (000816)*** 0 0 0 0 0 0 0 1 (000916)*** (000A16)*** (000B16)*** 0016 00 000
(000F16)*** 0 0 0 ? ? ? ? ? (001016)*** (001116)*** (001216)*** 0016 0016 0000 0016 0016 0000
(11) Address match interrupt register 1
(001416)*** (001516)*** (001616)***
(034016)*** 0 0 0 (034816)*** (034916)*** (034A16)*** (034B16)*** (035B16)*** 0 0 ? (035C16)*** 0 0 ? (035D16)*** 0 0 ? (035F16)*** (036216)*** (036616)*** (037616)*** (037716)*** (037816)*** 0016 0016 0016 0016 0000 0000 0000 0016 4016 4016 0016 0016 0016
(12) DMA0 control register (13) DMA1 control register (14) INT3 interrupt control register (15) Timer B5 interrupt control register (16) Timer B4 interrupt control register (17) Timer B3 interrupt control register (18) SI/O4 interrupt control register (19) SI/O3 interrupt control register (20) Bus collision detection interrupt control register (21) DMA0 interrupt control register (22) DMA1 interrupt control register (23) Key input interrupt control register (24) A-D conversion interrupt control register (25) UART2 transmit interrupt control register (26) UART2 receive interrupt control register (27) UART0 transmit interrupt control register (28) UART0 receive interrupt control register
(002C16)*** 0 0 0 0 0 ? 0 0 (003C16)*** 0 0 0 0 0 ? 0 0 (004416)*** (004516)*** (004616)*** (004716)*** (004816)*** (004916)*** (004A16)*** (004B16)*** (004C16)*** (004D16)*** (004E16)*** (004F16)*** (005016)*** (005116)*** (005216)*** 00?000 ?000 ?000 ?000 00?000 00?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000 ?000
(037C16)*** 0 0 0 0 1 0 0 0 (037D16)*** 0 0 0 0 0 0 1 0
x : Nothing is mapped to this bit ? : Undefined The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set. Note: When the VCC level is applied to the CNVSS pin, it is 0316 at a reset.
Figure 1.6.3. Device's internal status after a reset is cleared
16
Mitsubishi microcomputers
M16C / 62 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(58) Count start flag (59) Clock prescaler reset flag (60) One-shot start flag (61) Trigger select flag (62) Up-down flag (63) Timer A0 mode register (64) Timer A1 mode register (65) Timer A2 mode register (66) Timer A3 mode register (67) Timer A4 mode register (68) Timer B0 mode register (69) Timer B1 mode register (70) Timer B2 mode register (71) UART0 transmit/receive mode register (72) UART0 transmit/receive control register 0 (73) UART0 transmit/receive control register 1 (74) UART1 transmit/receive mode register (75) UART1 transmit/receive control register 0 (76) UART1 transmit/receive control register 1 (77) UART transmit/receive control register 2 (78) Flash memory control register 1 (Note2) (79) Flash memory control register 0 (Note2) (80) DMA0 cause select register (81) DMA1 cause select register (82) A-D control register 2 (83) A-D control register 0
(038016)*** (038116)*** 0 (038216)*** 0 0 (038316)*** (038416)*** (039616)*** (039716)*** (039816)*** (039916)*** (039A16)*** (039B16)*** 0 0 ? (039C16)*** 0 0 ? (039D16)*** 0 0 ? (03A016)***
0016
(84) A-D control register 1 (85) D-A control register
(03D716)*** (03DC16)*** (03E216)*** (03E316)*** (03E616)*** (03E716)*** (03EA16)*** (03EB16)*** (03EE16)*** (03EF16)*** (03F216)*** 0 0 (03F316)*** (03F616)*** (03FC16)***
0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 00000 0016 0016 0016 0016 0016 0016 000016 000016 000016 0000016 000016 000016 000016 000016
00000 0016 0016 0016 0016 0016 0016 0016 0000 0000 0000 0016
(86) Port P0 direction register (87) Port P1 direction register (88) Port P2 direction register (89) Port P3 direction register (90) Port P4 direction register (91) Port P5 direction register (92) Port P6 direction register (93) Port P7 direction register (94) Port P8 direction register (95) Port P9 direction register (96) Port P10 direction register (97) Pull-up control register 0
(03A416)*** 0 0 0 0 1 0 0 0 (03A516)*** 0 0 0 0 0 0 1 0 (03A816)*** 0016
(98) Pull-up control register 1(Note1) (03FD16)*** (99) Pull-up control register 2 (100) Port control register (101) Data registers (R0/R1/R2/R3) (102) Address registers (A0/A1) (103) Frame base register (FB) (104) Interrupt table register (INTB) (105) User stack pointer (USP) (106) Interrupt stack pointer (ISP) (107) Static base register (SB) (03FE16)*** (03FF16)***
(03AC16)*** 0 0 0 0 1 0 0 0 (03AD16)*** 0 0 0 0 0 0 1 0 (03B016)*** 0000000
(03B616)*** ? ? ? ? 0 ? ? ? (03B716)*** (03B816)*** (03BA16)*** 000001 0016 0016 0
(03D416)*** 0 0 0 0
(108) Flag register (FLG)
(03D616)*** 0 0 0 0 0 ? ? ? x : Nothing is mapped to this bit ? : Undefined The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set. Note1: When the VCC level is applied to the CNVSS pin, it is 0216 at a reset. Note2: This register is only exist in flash memory version.
Figure 1.6.4. Device's internal status after a reset is cleared
17
Mitsubishi microcomputers
M16C / 62 Group
SFR
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
000016 000116 000216 000316 000416 000516 000616 000716 000816 000916 000A16 000B16 000C16 000D16 000E16 000F16 001016 001116 001216 001316 001416 001516 001616 001716 001816 001916 001A16 001B16 001C16 001D16 001E16 001F16 002016 002116 002216 002316 002416 002516 002616 002716 002816 002916 002A16 002B16 002C16 002D16 002E16 002F16 003016 003116 003216 003316 003416 003516 003616 003716 003816 003916 003A16 003B16 003C16 003D16 003E16 003F16
004016 004116 004216 004316
Processor mode register 0 (PM0) Processor mode register 1(PM1) System clock control register 0 (CM0) System clock control register 1 (CM1) Chip select control register (CSR) Address match interrupt enable register (AIER) Protect register (PRCR) Data bank register (DBR)
004416 004516 004616 004716 004816 004916 004A16 004B16
INT3 interrupt control register (INT3IC) Timer B5 interrupt control register (TB5IC) Timer B4 interrupt control register (TB4IC) Timer B3 interrupt control register (TB3IC) SI/O4 interrupt control register (S4IC) INT5 interrupt control register (INT5IC) SI/O3 interrupt control register (S3IC) INT4 interrupt control register (INT4IC)
Bus collision detection interrupt control register (BCNIC)
Watchdog timer start register (WDTS) Watchdog timer control register (WDC) Address match interrupt register 0 (RMAD0)
004C16 004D16 004E16 004F16 005016 005116 005216
DMA0 interrupt control register (DM0IC) DMA1 interrupt control register (DM1IC) Key input interrupt control register (KUPIC) A-D conversion interrupt control register (ADIC)
UART2 transmit interrupt control register (S2TIC) UART2 receive interrupt control register (S2RIC) UART0 transmit interrupt control register (S0TIC) UART0 receive interrupt control register (S0RIC) UART1 transmit interrupt control register (S1TIC) UART1 receive interrupt control register (S1RIC)
Address match interrupt register 1 (RMAD1)
005316 005416 005516 005616 005716 005816 005916 005A16 005B16 005C16 005D16 005E16
DMA0 source pointer (SAR0)
005F16 006016 006116 006216
Timer A0 interrupt control register (TA0IC) Timer A1 interrupt control register (TA1IC) Timer A2 interrupt control register (TA2IC) Timer A3 interrupt control register (TA3IC) Timer A4 interrupt control register (TA4IC) Timer B0 interrupt control register (TB0IC) Timer B1 interrupt control register (TB1IC) Timer B2 interrupt control register (TB2IC) INT0 interrupt control register (INT0IC) INT1 interrupt control register (INT1IC) INT2 interrupt control register (INT2IC)
DMA0 destination pointer (DAR0)
006316 006416 006516
DMA0 transfer counter (TCR0)
DMA0 control register (DM0CON)
032A16 032B16 032C16 032D16 032E16
DMA1 source pointer (SAR1)
032F16 033016 033116 033216
DMA1 destination pointer (DAR1)
033316 033416 033516 033616 033716 033816 033916
DMA1 transfer counter (TCR1)
DMA1 control register (DM1CON)
033A16 033B16 033C16 033D16 033E16 033F16
Note 1: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.
Figure 1.7.1. Location of peripheral unit control registers (1)
18
Mitsubishi microcomputers
M16C / 62 Group
SFR
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
034016 034116 034216 034316 034416 034516 034616 034716 034816 034916 034A16 034B16 034C16 034D16 034E16 034F16 035016 035116 035216 035316 035416 035516 035616 035716 035816 035916 035A16 035B16 035C16 035D16 035E16 035F16 036016 036116 036216 036316 036416 036516 036616 036716 036816 036916 036A16 036B16 036C16 036D16 036E16 036F16 037016 037116 037216 037316 037416 037516 037616 037716 037816 037916 037A16 037B16 037C16 037D16 037E16 037F16
Timer B3, 4, 5 count start flag (TBSR) Timer A1-1 register (TA11) Timer A2-1 register (TA21) Timer A4-1 register (TA41) Three-phase PWM control register 0(INVC0) Three-phase PWM control register 1(INVC1) Three-phase output buffer register 0(IDB0) Three-phase output buffer register 1(IDB1) Dead time timer(DTT)
Timer B2 interrupt occurrence frequency set counter(ICTB2)
038016 038116 038216 038316 038416 038516 038616 038716 038816 038916 038A16 038B16 038C16 038D16 038E16 038F16 039016 039116 039216 039316 039416 039516 039616 039716 039816 039916 039A16
Count start flag (TABSR) Clock prescaler reset flag (CPSRF) One-shot start flag (ONSF) Trigger select register (TRGSR) Up-down flag (UDF) Timer A0 (TA0) Timer A1 (TA1) Timer A2 (TA2) Timer A3 (TA3) Timer A4 (TA4) Timer B0 (TB0) Timer B1 (TB1) Timer B2 (TB2) Timer A0 mode register (TA0MR) Timer A1 mode register (TA1MR) Timer A2 mode register (TA2MR) Timer A3 mode register (TA3MR) Timer A4 mode register (TA4MR) Timer B0 mode register (TB0MR) Timer B1 mode register (TB1MR) Timer B2 mode register (TB2MR)
Timer B3 register (TB3) Timer B4 register (TB4) Timer B5 register (TB5)
Timer B3 mode register (TB3MR) Timer B4 mode register (TB4MR) Timer B5 mode register (TB5MR) Interrupt cause select register (IFSR) SI/O3 transmit/receive register (S3TRR) SI/O3 control register (S3C) SI/O3 bit rate generator (S3BRG) SI/O4 transmit/receive register (S4TRR) SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG)
039B16 039C16 039D16 039E16 039F16 03A016 03A116 03A216 03A316 03A416 03A516 03A616 03A716 03A816 03A916 03AA16 03AB16 03AC16 03AD16 03AE16 03AF16 03B016 03B116 03B216 03B316 03B416 03B516
UART0 transmit/receive mode register (U0MR)
UART0 bit rate generator (U0BRG) UART0 transmit buffer register (U0TB)
UART0 transmit/receive control register 0 (U0C0) UART0 transmit/receive control register 1 (U0C1)
UART0 receive buffer register (U0RB)
UART1 transmit/receive mode register (U1MR)
UART1 bit rate generator (U1BRG) UART1 transmit buffer register (U1TB)
UART1 transmit/receive control register 0 (U1C0) UART1 transmit/receive control register 1 (U1C1)
UART1 receive buffer register (U1RB)
UART transmit/receive control register 2 (UCON)
UART2 special mode register 2(U2SMR2) UART2 special mode register (U2SMR)
UART2 transmit/receive mode register (U2MR) UART2 bit rate generator (U2BRG) UART2 transmit buffer register (U2TB) UART2 transmit/receive control register 0 (U2C0) UART2 transmit/receive control register 1 (U2C1) UART2 receive buffer register (U2RB)
03B616 03B716 03B816 03B916 03BA16 03BB16 03BC16 03BD16 03BE16 03BF16
Flash memory control register 1 (FMR1) (Note1) Flash memory control register 0 (FMR0) (Note1) DMA0 request cause select register (DM0SL) DMA1 request cause select register (DM1SL) CRC data register (CRCD) CRC input register (CRCIN)
Note 1: This register is only exist in flash memory version. Note 2: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.
Figure 1.7.2. Location of peripheral unit control registers (2)
19
Mitsubishi microcomputers
M16C / 62 Group
SFR
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
03C016 03C116 03C216 03C316 03C416 03C516 03C616 03C716 03C816 03C916 03CA16 03CB16 03CC16 03CD16 03CE16 03CF16 03D016 03D116 03D216 03D316 03D416 03D516 03D616 03D716 03D816 03D916 03DA16 03DB16 03DC16 03DD16 03DE16 03DF16 03E016 03E116 03E216 03E316 03E416 03E516 03E616 03E716 03E816 03E916 03EA16 03EB16 03EC16 03ED16 03EE16 03EF16 03F016 03F116 03F216 03F316 03F416 03F516 03F616 03F716 03F816 03F916 03FA16 03FB16 03FC16 03FD16 03FE16 03FF16
A-D register 0 (AD0) A-D register 1 (AD1) A-D register 2 (AD2) A-D register 3 (AD3) A-D register 4 (AD4) A-D register 5 (AD5) A-D register 6 (AD6) A-D register 7 (AD7)
A-D control register 2 (ADCON2) A-D control register 0 (ADCON0) A-D control register 1 (ADCON1) D-A register 0 (DA0) D-A register 1 (DA1) D-A control register (DACON)
Port P0 (P0) Port P1 (P1) Port P0 direction register (PD0) Port P1 direction register (PD1) Port P2 (P2) Port P3 (P3) Port P2 direction register (PD2) Port P3 direction register (PD3) Port P4 (P4) Port P5 (P5) Port P4 direction register (PD4) Port P5 direction register (PD5) Port P6 (P6) Port P7 (P7) Port P6 direction register (PD6) Port P7 direction register (PD7) Port P8 (P8) Port P9 (P9) Port P8 direction register (PD8) Port P9 direction register (PD9) Port P10 (P10) Port P10 direction register (PD10)
Pull-up control register 0 (PUR0) Pull-up control register 1 (PUR1) Pull-up control register 2 (PUR2) Port control register (PCR)
Note : Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.
Figure 1.7.3. Location of peripheral unit control registers (3)
20
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions Memory Space Expansion Features
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Here follows the description of the memory space expansion function. With the processor running in memory expansion mode or in microprocessor mode, the memory space expansion features provide the means of expanding the accessible space. The memory space expansion features run in one of the three modes given below. (1) Normal mode (no expansion) (2) Memory space expansion mode 1 (to be referred as expansion mode 1) (3) Memory space expansion mode 2 (to be referred as expansion mode 2) Use bits 5 and 4 (PM15, PM14) of processor mode register 1 to select a desired mode. The external memory area the chip select signal indicates is different in each mode so that the accessible memory space varies. Table 1.8.1 shows how to set individual modes and corresponding accessible memory spaces. For external memory area the chip select signal indicates, see Table 1.12.1 on page 33. Table 1.8.1. The way of setting memory space expansion modes and corresponding memory spaces Expansion mode Normal mode (no expansion) Expansion mode 1 Expansion mode 2 How to set PM15 and PM14 0, 0 1, 0 1, 1 Accessible memory space Up to 1M byte Up to 1.2M bytes Up to 4M bytes
Here follows the description of individual modes.
(1) Normal mode (a mode with memory not expanded)
`Normal mode' means a mode in which memory is not expanded. Figure 1.8.1 shows the memory maps and the chip select areas in normal mode.
Normal mode (memory area = 1M bytes for PM15 = 0, PM14 = 0) Memory expansion mode
0000016 0040016 Internal RAM area XXXXX16 Internal area reserved 0400016 0800016 Internal area reserved Internal RAMarea SFR area
Microprocessor mode
SFR area
CS3 (16K bytes) CS2 (128K bytes)
2800016
CS1 (32K bytes)
3000016 External area External area
CS0
Memory expansion mode: 640K bytes Microprocessor mode: 832K bytes
D000016 YYYYY16
Internal area reserved Internal ROM area
FFFFF16 Type No. M30622M4 M30620M8 M30620MA M30620MC/EC M30622M8/E8 M30622MA M30622MC M30624MG/FG Address XXXXX16 00FFF16 02BFF16 02BFF16 02BFF16 013FF16 017FF16 017FF16 053FF16 Address YYYYY16 F800016 F000016 E800016 E000016 F000016 E800016 E000016 C000016
Note 1: These memory maps show an instance in which PM13 is set to 0; but in the case of M30624MG/FG, they show an instance in which PM13 is set to 1. Note 2: The memory maps in single-chip mode are omitted.
Figure 1.8.1. The memory maps and the chip select areas in normal mode
21
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions (2) Expansion mode 1
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the memory space can be expanded by 176K bytes in addition to that in normal mode. Figure 1.8.2 shows the memory location and chip select area in expansion mode 1. _______ _______ _______ In accessing data in expansion mode 1, CS3, CS2, and CS1 go active in the area from 0400016 through _______ 2FFFF16; in fetching a program, CS0 goes active. That is, the address space is expanded by using the ________ _______ _______ area from 0400016 through 2FFFF16 (176K bytes) appropriately for accessing data (CS3, CS2, CS1) _______ and fetching a program (CS0).
Expansion mode 1 (memory space = 1.2M bytes for PM15 = 1, PM14 = 0) Memory expansion mode
0000016 0040016 XXXXX16 0400016 0800016 SFR area Internal RAM area
Internal area reserved
Microprocessor mode
SFR area Internal RAM area
Internal area reserved
CS3 (16K bytes) CS2 (128 Kbytes)
0400016 to 2FFFF16
176K bytes = the extent of memory expanded
2800016
CS1 (32K bytes)
3000016 External area External area
CS0:active in fetching a program CS1, CS2, CS3:active in accessing data
CS0
Memory expansion mode: 816K bytes Microprocessor mode: 1008K bytes 3000016 to FFFFF16
D000016 YYYYY16 FFFFF16
Internal area reserved
Internal ROM area Address XXXXX16 00FFF16 02BFF16 02BFF16 02BFF16 013FF16 017FF16 017FF16 053FF16 Address YYYYY16 F800016 F000016 E800016 E000016 F000016 E800016 E000016 C000016
CS0:active both in fetching a program and in accessing data
Type No. M30622M4 M30620M8 M30620MA M30620MC/EC M30622M8/E8 M30622MA M30622MC M30624MG/FG
Note 1: These memory maps show an instance in which PM13 is set to 0; but in the case of M30624MG/FG, they show an instance in which PM13 is set to 1. Note 2: The memory maps in single-chip mode are omitted.
Figure 1.8.2. Memory location and chip select area in expansion mode 1
22
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A connection example Figure 1.8.3 shows a connection example of the MCU with the external memories in expansion mode 1. _______ _______ In this example, CS0 is connected with a 1-M byte flash ROM and CS2 is connected with a 128-K byte SRAM.
An example of connecting the MCU with external memories in expansion mode 1
(An example of using M30622MC in microprocessor mode)
8 D0 to D7 A0 to A16 A17 A18 17 DQ0 to DQ7 AD0 to AD16
M30622MC
A19 CS1 CS2 CS3 RD CS0
AD19
OE CS
AD0 to AD16 OE S2 S1 W
0000016 0040016 017FF16 0400016 0800016
SFR area Internal RAM area
Internal area reserved SRAM (128K bytes)
128K bytes SRAM
WR
DQ0 to DQ7
1M byte flash ROM
AD17 AD18
Flash ROM
(1M byte)
Usable for data only
(128K bytes)
Usable for programs only
2800016 3000016 External area
CS2 CS0
(1008K bytes)
D000016
Usable both for programs and for data
FFFFF16
Figure 1.8.3. External memory connect example in expansion mode 1
23
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions (3) Expansion mode 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In expansion mode 2, the data bank register (0000B16) goes effective. Figure 1.8.4 shows the data bank register.
Data bank register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol DBR Bit symbol
Address 000B16
When reset 0016
Bit name
Description
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0". OFS BSR Offset bit Bank selection bits 0: Not offset 1: Offset
b5 b4 b3 b5 b4 b3
0 0 0: Bank 0 0 1 0: Bank 2 1 0 0: Bank 4 1 1 0: Bank 6
0 0 1: Bank 1 0 1 1: Bank 3 1 0 1: Bank 5 1 1 1: Bank 7
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Figure 1.8.4. Data bank register
Expansion mode 2 (memory space = 4M bytes for PM15 = 1, PM14 = 1)
Memory expansion mode 0000016 0040016 XXXXX16
Internal area reserved Internal area reserved
Microprocessor mode SFR area Internal RAM area
SFR area Internal RAM area
0400016 0800016
CS3 (16K bytes) CS2 (128K bytes)
2800016 4000016 External area External area
CS1 (96K bytes) CS0
Memory expansion mode: 512K bytes x 7banks + 256K bytes Microprocessor mode: 512K bytes x 8banks
D000016 YYYYY16
Internal area reserved
Addresses from 4000016 through BFFFF16 Bank 7 in fetching a program A bank selected by use of the bank selection bits in accessing data Addresses from C000016 through FFFFF16 Bank 7 invariably Bank number is output to CS3 to CS1
Internal ROM area FFFFF16 Type No. M30622M4 M30620M8 M30620MA M30620MC/EC M30622M8/E8 M30622MA M30622MC M30624MG/FG Address XXXXX16 00FFF16 02BFF16 02BFF16 02BFF16 013FF16 017FF16 017FF16 053FF16 Address YYYYY16 F800016 F000016 E800016 E000016 F000016 E800016 E000016 C000016
Note 1: These memory maps show an instance in which PM13 is set to 0; but in the case of M30624MG/FG, they show an instance in which PM13 is set to 1. Note 2: The memory maps in single-chip mode are omitted.
Figure 1.8.5. Memory location and chip select area in expansion mode 2
24
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The data bank register is made up of the bank selection bits (bits 5 through 3) and the offset bit (bit 2). The bank selection bits are used to set a bank number for accessing data lying between 4000016 and BFFFF16. Assigning 1 to the offset bit provides the means to set offsets covering 4000016. Figure 1.8.5 shows the memory location and chip select areas in expansion mode 2. _______ The area relevant to CS0 ranges from 4000016 through FFFFF16. As for the area from 4000016 through _______ BFFFF16, the bank number set by use of the bank selection bits are output from the output terminals CS3 _______ _______ _______ - CS1 only in accessing data. In fetching a program, bank 7 (1112) is output from CS3 - CS1. As for the _______ _______ area from C000016 through FFFFF16, bank 7 (1112) is output from CS3 - CS1 without regard to accessing data or to fetching a program. _______ _______ _______ In accessing an area irrelevant to CS0, a chip select signal CS3 (400016 - 7FFF16), CS2 (800016 _______ 27FFF16), and CS1 (2800016 - 3FFFF16) is output depending on the address as in the past. Figure 1.8.6 shows an example of connecting the MCU with a 4-M byte ROM and to a 128-K byte SRAM. _______ _______ _______ _______ Connect the chip select of 4-M byte ROM with CS0. Connect M16C's CS3, CS2, and CS1 with address inputs AD21, AD20, and AD19 respectively. Connect M16C's output A19 with address input AD18. Figure 1.8.7 shows the relationship between addresses of the 4-M byte ROM and those of M16C. In this mode, memory is banked every 512 K bytes, so that data access in different banks requires switching over banks. However, data on bank boundaries when offset bit = 0 can be accessed successively by setting the offset bit to 1, because in which case the memory address is offset by 4000016. For example, two bytes of data located at addresses 0FFFFF16 and 10000016 of 4-Mbyte ROM can be accessed successively without having to change the bank bit by setting the offset bit to 1 and then accessing addresses 07FFFF16 and 80000016. On the other hand, the SRAM's chip select assumes _______ that CS0=1 (not selected) _______ and CS2=0 (selected), so _______ connect CS0 with S2 and _______ ____ CS2 with S1. If the SRAM doesn't have a bipolar chip select input terminal, decode _______ _______ CS0 and CS2 externally.
An example of connecting the MCU with external memories in expansion mode 2 (M30622MC, Microprocessor mode)
8 D0 to D7 A0 to A16 A17 A19 CS1 CS2 CS3 RD CS0 17 DQ0 to D Q7 AD0 to AD16
M30622MC
AD19 AD20 AD21 OE CS
WR
DQ0 to D Q7 AD0 to AD16 OE S2 S1 W
Note: If only one chip select terminal (S1 or S2) is present, decoding by use of an external circuit is required.
Figure 1.8.6. An example of connecting the MCU with external memories in expansion mode 2
128-K byte SRAM
4-M byte ROM
AD17 AD18
25
Mitsubishi microcomputers
M16C / 62 Group
Memory Space Expansion Functions
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Address area map of 4-M byte ROM
ROM address
Offset bit = 0 000000 40000
M16C address
Offset bit = 1
040000
Bank 0
BFFFF 40000
40000
080000
Bank 0
BFFFF 40000
0C0000
Bank 1
BFFFF 40000 Data area
100000
Bank 1
BFFFF 40000
140000
Bank 2
BFFFF 40000
180000
Bank 2
BFFFF 40000
Areas used for data only 00000016 to 38000016
200000 1C0000
Bank 3
BFFFF 40000
Bank 3
BFFFF 40000
240000
Bank 4
BFFFF 40000
280000
Bank 4
BFFFF 40000
2C0000
Bank 5
BFFFF 40000 Data area
300000
Bank 5
BFFFF 40000
340000
Bank 6
BFFFF 40000 Program/ data area
Area commonly used for data and programs 38000016 to 3BFFFF16 Area commonly used for data and programs 3C000016 to 3FFFFF16
380000
Bank 6
BFFFF
Bank 7
3C0000 Program/ data area 3FFFFF
7FFFF C0000 FFFFF
Figure 1.8.7. Relationship between addresses on 4-M byte ROM and those on M16C
26
Mitsubishi microcomputers
M16C / 62 Group
Software Reset Software Reset
Writing "1" to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has the same effect as a hardware reset. The contents of internal RAM are preserved.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Processor Mode (1) Types of Processor Mode
One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, the memory map, and the access space differ according to the selected processor mode. * Single-chip mode In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions. * Memory expansion mode In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM). In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.) * Microprocessor mode In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The internal ROM area cannot be accessed. In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)
(2) Setting Processor Modes
The processor mode is set using the CNVSS pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102". Regardless of the level of the CNVSS pin, changing the processor mode bits selects the mode. Therefore, never change the processor mode bits when changing the contents of other bits. Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area. * Applying VSS to CNVSS pin The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode is selected by writing "012" to the processor mode is selected bits. * Applying VCC to CNVSS pin The microcomputer starts to operate in microprocessor mode after being reset. Figure 1.9.1 shows the processor mode register 0 and 1. Figure 1.10.1 shows the memory maps applicable for each of the modes when memory area dose not be expanded (normal mode).
27
Mitsubishi microcomputers
M16C / 62 Group
Processor Mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Processor mode register 0 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PM0
Address 000416
When reset 0016 (Note 2)
Bit symbol
PM00 PM01 PM02 PM03
Bit name
Processor mode bit
b1 b0
Function
0 0: Single-chip mode 0 1: Memory expansion mode 1 0: Inhibited 1 1: Microprocessor mode 0 : RD,BHE,WR 1 : RD,WRH,WRL The device is reset when this bit is set to "1". The value of this bit is "0" when read.
b5 b4
RW
R/W mode select bit Software reset bit
PM04 PM05 PM06
Multiplexed bus space select bit
0 0 : Multiplexed bus is not used 0 1 : Allocated to CS2 space 1 0 : Allocated to CS1 space 1 1 : Allocated to entire space (Note4)
Port P40 to P43 function select bit (Note 3) BCLK output disable bit
0 : Address output 1 : Port function (Address is not output) 0 : BCLK is output 1 : BCLK is not output (Pin is left floating)
PM07
Note 1: Set bit 1 of the protect register (address 000A16) to "1" when writing new values to this register. Note 2: If the VCC voltage is applied to the CNVSS, the value of this register when reset is 0316. (PM00 and PM01 both are set to "1".) Note 3: Valid in microprocessor and memory expansion modes. Note 4: If the entire space is of multiplexed bus in memory expansion mode, choose an 8bit width.The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode. The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.
Processor mode register 1 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
0
0
Symbol PM1
Address 000516
When reset 00000XX02
Bit symbol
Reserved bit Nothing is assigned.
Bit name
Function
Must always be set to "0"
RW
In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
PM13 Internal reserved area expansion bit (Note 2) 0: The same internal reserved area as that of M16C/60 and M16C/61 group 1: Expands the internal RAM area and internal ROM area to 23 K bytes and to 256K bytes respectively. (Note 2)
b5 b4
PM14
Memory area expansion bit (Note 3)
PM15
0 0 : Normal mode (Do not expand) 0 1 : Inhibited 1 0 : Memory area expansion mode 1 1 1 : Memory area expansion mode 2 Must always be set to "0"
Reserved bit PM17 Wait bit
0 : No wait state 1 : Wait state inserted
Note 1: Set bit 1 of the protect register (address 000A16) to "1" when writing new values to this register. Note 2: Be sure to set this bit to 0 except products whose RAM size and ROM size exceed 15K bytes and 192K bytes respectively. In using M30624MG/FG, a product having a RAM of more than 15K bytes and a ROM of more than 192K bytes, set this bit to 1 at the beginning of user program. Specify D000016 or a subsequent address, which becomes an internal ROM area if PM13 is set to "0" at the time reset is revoked, for the reset vector table of user program. Note 3: With the processor running in memory expansion mode or in microprocessor mode, setting this bit provides the means of expanding the external memory area. (Normal mode: up to 1M byte, expansion mode 1: up to 1.2 M bytes, expansion mode 2: up to 4M bytes) For details, see "Memory space expansion functions".
Figure 1.9.1. Processor mode register 0 and 1
28
Mitsubishi microcomputers
M16C / 62 Group
Processor Mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Single-chip mode
0000016
Memory expansion mode
SFR area Internal RAM area
Internally reserved area
Microprocessor mode
SFR area Internal RAM area
Internally reserved area
SFR area
0040016
Internal RAM area
XXXXX16
0400016
Inhibited
External area
Internally reserved area
External area
D000016 YYYYY16
Internal ROM area
FFFFF16 Type No. M30622M4 M30620M8 M30620MA M30620MC/EC M30622M8/E8 M30622MA M30622MC M30624MG/FG Address XXXXX16 00FFF16 02BFF16 02BFF16 02BFF16 013FF16 017FF16 017FF16 053FF16
Internal ROM area
Address YYYYY16 F800016 F000016 E800016 E000016 F000016 E800016 E000016 C000016
External area : Accessing this area allows the user to access a device connected externally to the microcomputer.
Note : These memory maps show an instance in which PM13 is set to 0; but in the case of M30624MG/FG, they show an instance in which PM13 is set to 1.
Figure 1.10.1. Memory maps in each processor mode (without memory area expansion, normal mode)
29
Mitsubishi microcomputers
M16C / 62 Group
Processor Mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.10.2 shows the memory maps and the chip selection areas effected by PM13 (the internal reserved area expansion bit) in each processor mode for the product having an internal RAM of more than 15K bytes and a ROM of more than 192K bytes.
(1)Normal mode
Internal reserved area expansion bit="0"
Memory expansion mode
0000016 0040016 0400016 0800016 SFR area (1K bytes) Internal RAM area (15K bytes)
Internal reserved area expansion bit="1"
Memory expansion mode
0000016 0040016 SFR area (1K bytes) Internal RAM area (20K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (15K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (20K bytes) Internal reserved area
CS3(16K bytes) CS2 (128K bytes)
0540016 Internal reserved area 0600016 0800016
CS3(8K bytes) CS2 (128K bytes)
2800016 3000016 External area CFFFF16 D000016 Internal ROM area (192K bytes) FFFFF16 After reset External area
CS1(32K bytes)
2800016 3000016 External area External area
CS1(32K bytes)
CS0
Memory expansion mode : 640K bytes Microprocessor mode : 832K bytes
BFFFF16 C000016 Internal ROM area (256K bytes)
CS0
Memory expansion mode : 576K bytes Microprocessor mode : 832K bytes
FFFFF16 After reset, and set the Internal reserved area expansion bit to "1"
Note: The reset vector lies in an area between D000016 and FFFFB16. (2)Expansion mode 1
Internal reserved area expansion bit="0"
Memory expansion mode
0000016 0040016 0400016 0800016 SFR area (1K bytes) Internal RAM area (15K bytes)
Internal reserved area expansion bit="1"
Memory expansion mode
0000016 0040016 SFR area (1K bytes) Internal RAM area (20K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (15K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (20K bytes) Internal reserved area
CS3
(16K bytes)
176K bytes = the extent of memory expanded
0540016 Internal reserved area 0600016 0800016
CS3 (8K bytes) CS2
(128K bytes)
168K bytes = the extent of memory expanded
CS2 (128K bytes)
2800016 3000016 External area CFFFF16 D000016 Internal ROM area (192K bytes) FFFFF16 After reset External area
CS1
(32K bytes)
2800016 3000016 External area External area
CS1
(32K bytes)
CS0
Memory expansion mode : 816K bytes Microprocessor mode : 1008K bytes
BFFFF16 C000016 Internal ROM area (256K bytes)
CS0
Memory expansion mode : 744K bytes Microprocessor mode : 1000K bytes
FFFFF16 After reset, and set the Internal reserved area expansion bit to "1"
Note: The reset vector lies in an area between D000016 and FFFFB16. (2)Expansion mode 2
Internal reserved area expansion bit="0"
Memory expansion mode
0000016 0040016 0400016 0800016 SFR area (1K bytes) Internal RAM area (15K bytes)
Internal reserved area expansion bit="1"
Memory expansion mode
0000016 0040016 SFR area (1K bytes) Internal RAM area (20K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (15K bytes)
Microprocessor mode
SFR area (1K bytes) Internal RAM area (20K bytes) Internal reserved area
CS3(16K bytes) CS2 (128K bytes)
0540016 Internal reserved area 0600016 0800016
CS3(8K bytes) CS2(128K bytes)
2800016
2800016
CS1(96K bytes)
4000016 External area External area 4000016 BFFFF16 C000016 External area External area
CS1(96K bytes)
CS0
CFFFF16 D000016 Internal ROM area (192K bytes) FFFFF16 After reset
Memory expansion mode : 512K bytes x 7banks + 256K bytes Microprocessor mode : 512K bytes x 8banks
CS0
Internal ROM area (256K bytes)
Memory expansion mode : 512K bytes x 7banks + 256K bytes Microprocessor mode : 512K bytes x 8banks
FFFFF16 After reset, and set the Internal reserved area expansion bit to "1"
Note: The reset vector lies in an area between D000016 and FFFFB16.
Figure 1.10.2. Memory location and chip select area in each processor mode
30
Mitsubishi microcomputers
M16C / 62 Group
Bus Settings Bus Settings
The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus settings. Table 1.11.1 shows the factors used to change the bus settings. Table 1.11.1. Factors for switching bus settings Bus setting Switching factor Switching external address bus width Bit 6 of processor mode register 0 Switching external data bus width BYTE pin Switching between separate and multiplex bus Bits 4 and 5 of processor mode register 0
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) Selecting external address bus width
The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0 is set to "1", the external address bus width is set to 16 bits, and P2 and P3 become part of the address bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set to "0", the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the address bus.
(2) Selecting external data bus width
The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be set.) When the BYTE pin is "L", the bus width is set to 16 bits; when "H", it is set to 8 bits. (The internal bus width is permanently set to 16 bits.) While operating, fix the BYTE pin either to "H" or to "L".
(3) Selecting separate/multiplex bus
The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0. * Separate bus In this mode, the data and address are input and output separately. The data bus can be set using the BYTE pin to be 8 or 16 bits. When the BYTE pin is "H", the data bus is set to 8 bits and P0 functions as the data bus and P1 as a programmable I/O port. When the BYTE pin is "L", the data bus is set to 16 bits and P0 and P1 are both used for the data bus. When the separate bus is used for access, a software wait can be selected. * Multiplex bus In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin = "H"), the 8 bits from D0 to D7 are multiplexed with A0 to A7. With a 16-bit data bus selected (BYTE pin = "L"), the 8 bits from D0 to D7 are multiplexed with A1 to A8. D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are mapped to the microcomputer's even addresses (every 2nd address). To access these external devices, access the even addresses as bytes. The ALE signal latches the address. It is output from P56. Before using the multiplex bus for access, be sure to insert a software wait. If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width. The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode. The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.
31
Mitsubishi microcomputers
M16C / 62 Group
Bus Settings
Table 1.11.2. Pin functions for each processor mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Processor mode
Single-chip mode
Memory expansion mode/microprocessor modes
"01", "10" "00" (separate bus) 8 bits "H" Data bus I/O port Address bus Address bus Address bus Address bus /O port 16 bits "L" Data bus Data bus Address bus Address bus Address bus Address bus I/O port
Memory expansion mode
Multiplexed bus space select bit
Either CS1 or CS2 is for multiplexed bus and others are for separate bus 8 bits "H" I/O port I/O port I/O port I/O port I/O port I/O port I/O port Data bus I/O port 16 bits "L" Data bus Data bus
"11" (Note 1) multiplexed bus for the entire space 8 bit "H" I/O port I/O port Address bus /data bus Address bus /data bus A8/D7 I/O port I/O port
Data bus width BYTE pin level P00 to P07 P10 to P17 P20 P21 to P27 P30 P31 to P37 P40 to P43 Port P40 to P43 function select bit = 1 P40 to P43 Port P40 to P43 function select bit = 0 P44 to P47 P50 to P53 P54 P55 P56 P57
Address bus Address bus /data bus(Note 2) Address bus /data bus(Note 2) Address bus Address bus /data bus(Note 2)
Address bus
/data bus(Note 2)
Address bus I/O port
Address bus I/O port
I/O port
Address bus
Address bus
Address bus
Address bus
I/O port
I/O port I/O port I/O port I/O port I/O port I/O port
CS (chip select) or programmable I/O port (For details, refer to "Bus control") Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK (For details, refer to "Bus control") HLDA HOLD ALE RDY HLDA HOLD ALE RDY HLDA HOLD ALE RDY HLDA HOLD ALE RDY HLDA HOLD ALE RDY
Note 1: If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width. The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode. The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select. Note 2: Address bus when in separate bus mode.
32
Mitsubishi microcomputers
M16C / 62 Group
Bus Control Bus Control
The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode. The software waits are valid in all processor modes. (1) Address bus/data bus The address bus consists of the 20 pins A0 to A19 for accessing the 1M bytes of address space. The data bus consists of the pins for data I/O. When the BYTE pin is "H", the 8 ports D0 to D7 function as the data bus. When BYTE is "L", the 16 ports D0 to D15 function as the data bus. When a change is made from single-chip mode to memory expansion mode, the value of the address bus is undefined until external memory is accessed. (2) Chip select signal The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control register (address 000816) set each pin to function as a port or to output the chip select signal. The chip select control register is valid in memory expansion mode and microprocessor mode. In single-chip mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control register. _______ In microprocessor mode, only CS0 outputs the chip select signal after the reset state has been can_______ _______ celled. CS1 to CS3 function as input ports. Figure 1.12.1 shows the chip select control register. The chip select signal can be used to split the external area into as many as four blocks. Tables 1.12.1 and 1.12.2 show the external memory areas specified using the chip select signal. Table 1.12.1. External areas specified by the chip select signals (A product having an internal RAM equal to or less than 15K bytes and a ROM equal to or less than 192K bytes)(Note)
Memory space expansion mode Processor mode CS0 3000016 to CFFFF16 (640K bytes) 3000016 to FFFFF16 (832K bytes) 0400016 to CFFFF16 (816K bytes) 0400016 to FFFFF16 (1008K bytes) 4000016 to BFFFF16 (512K bytes X 7 + 256K bytes) 4000016 to FFFFF16 (512K bytes X 8)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Chip select signal
CS1 CS2 CS3
Memory expansion mode
Specified address range
Normal mode (PM15,14=0,0)
Microprocessor mode
Memory expansion mode
Expansion mode 1 (PM15,14=1,0)
2800016 to 2FFFF16 (32K bytes) 0800016 to 27FFF16 (128K bytes) 0400016 to 07FFF16 (16K bytes)
Microprocessor mode
Expansion mode 2 Memory expansion mode (PM15,14=1,1)
2800016 to 3FFFF16 (96K bytes)
Microprocessor mode
Note :Be sure to set bit 3 (PM13) of processor mode register 1 to "0".
33
Mitsubishi microcomputers
M16C / 62 Group
Bus Control
Table 1.12.2. External areas specified by the chip select signals (A product having an internal RAM of more than 15K bytes and a ROM of more than 192K bytes)
Memory space expansion mode Processor mode CS0 When PM13=0 3000016 to CFFFF16 (640K bytes) When PM13=1 3000016 to BFFFF16 (576K bytes) 3000016 to FFFFF16 (816K bytes) When PM13=0 0400016 to CFFFF16 (816K bytes) When PM13=1 0600016 to BFFFF16 (744K bytes) When PM13=0 0400016 to FFFFF16 (1008K bytes) When PM13=1 0600016 to BFFFF16 (1000K bytes) 4000016 to BFFFF16 (512K bytes X 7 +256K bytes) 4000016 to FFFFF16 (512K bytes X 8) When PM13=0 0400016 to 07FFF16 (16K bytes) When PM13=1 0600016 to 07FFF16 (8K bytes)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Chip select signal
CS1 CS2 CS3
Memory expansion mode
Normal mode (PM15,14=0,0)
Specified address range
Microprocessor mode
Memory expansion mode
Expansion mode 1 (PM15,14=1,0)
2800016 to 2FFFF16 (32K bytes)
0800016 to 27FFF16 (128K bytes)
Microprocessor mode
Expansion mode 2 (PM15,14=1,1)
Memory expansion mode
Microprocessor mode
2800016 to 3FFFF16 (96K bytes)
Chip select control register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol CSR
Address 000816
When reset 0116
Bit symbol
CS0 CS1 CS2 CS3 CS0W CS1W CS2W CS3W
Bit name
CS0 output enable bit CS1 output enable bit CS2 output enable bit CS3 output enable bit CS0 wait bit CS1 wait bit CS2 wait bit CS3 wait bit
Function
0 : Chip select output disabled (Normal port pin) 1 : Chip select output enabled
RW
0 : Wait state inserted 1 : No wait state
Figure 1.12.1. Chip select control register
34
Mitsubishi microcomputers
M16C / 62 Group
Bus Control (3) Read/write signals
With a 16-bit data bus (BYTE pin ="L"), bit 2 of the processor mode register 0 (address 000416) select the _____ ________ ______ _____ ________ _________ combinations of RD, BHE, and WR signals or RD, WRL, and WRH signals. With an 8-bit data bus (BYTE _____ ______ _______ pin = "H"), use the combination of RD, WR, and BHE signals. (Set bit 2 of the processor mode register 0 (address 000416) to "0".) Tables 1.12.3 and 1.12.4 show the operation of these signals. _____ ______ ________ After a reset has been cancelled, the combination of RD, WR, and BHE signals is automatically selected. _____ _________ _________ When switching to the RD, WRL, and WRH combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set (Note). Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".
_____ ________ _________
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.12.3. Operation of RD, WRL, and WRH signals
Data bus width 16-bit (BYTE = "L") RD L H H H WRL H L H L WRH H H L L Status of external data bus Read data Write 1 byte of data to even address Write 1 byte of data to odd address Write data to both even and odd addresses
_____
______
________
Table 1.12.4. Operation of RD, WR, and BHE signals
Data bus width RD H L H L H L H L WR L H L H L H L H BHE L L H H L L Not used Not used A0 H H L L L L H/L H/L Status of external data bus Write 1 byte of data to odd address Read 1 byte of data from odd address Write 1 byte of data to even address Read 1 byte of data from even address Write data to both even and odd addresses Read data from both even and odd addresses Write 1 byte of data Read 1 byte of data
16-bit (BYTE = "L")
8-bit (BYTE = "H")
(4) ALE signal
The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.
When BYTE pin = "H" ALE D0/A0 to D7/A7 A8 to A19 Address Data (Note 1) When BYTE pin = "L" ALE A0 D0/A1 to D7/A8 Address (Note 2) A9 to A19 Address Address Address Data (Note 1)
Note 1: Floating when reading. Note 2: When multiplexed bus for the entire space is selected, these are I/O ports.
Figure 1.12.2. ALE signal and address/data bus
35
Mitsubishi microcomputers
M16C / 62 Group
Bus Control
________
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(5) The RDY signal
________
RDY is a signal that facilitates access to an external device that requires long access time. As shown in ________ Figure 1.12.3, if an "L" is being input to the RDY at the BCLK falling edge, the bus turns to the wait state. ________ If an "H" is being input to the RDY pin at the BCLK falling edge, the bus cancels the wait state. Table 1.12.5 shows the state of the microcomputer with the bus in the wait state, and Figure 1.12.3 shows an ____ ________ example in which the RD signal is prolonged by the RDY signal. ________ The RDY signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the ________ chip select control register (address 000816) are set to "0". The RDY signal is invalid when setting "1" to ________ all bits 4 to 7 of the chip select control register (address 000816), but the RDY pin should be treated as properly as in non-using. Table 1.12.5. Microcomputer status in ready state (Note) Item Oscillation
___ _____
Status On
________
R/W signal, address bus, data bus, CS __________ ALE signal, HLDA, programmable I/O ports Internal peripheral circuits
________
Maintain status when RDY signal received On
Note: The RDY signal cannot be received immediately prior to a software wait.
In an instance of separate bus
BCLK
RD CSi
(i=0 to 3)
RDY
tsu(RDY - BCLK)
Accept timing of RDY signal
In an instance of multiplexed bus
BCLK
RD CSi
(i=0 to 3)
RDY
tsu(RDY - BCLK)
: Wait using RDY signal : Wait using software
_____
Accept timing of RDY signal
________
Figure 1.12.3. Example of RD signal extended by RDY signal
36
Mitsubishi microcomputers
M16C / 62 Group
Bus Control (6) Hold signal
The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to __________ the HOLD pin places the microcomputer in the hold state at the end of the current bus access. This status __________ __________ is maintained and "L" is output from the HLDA pin as long as "L" is input to the HOLD pin. Table 1.12.6 shows the microcomputer status in the hold state. __________ Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.
__________
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
HOLD > DMAC > CPU
Figure 1.12.4. Bus-using priorities Table 1.12.6. Microcomputer status in hold state Item Oscillation
___ _____ _______
Status ON Floating Floating Maintains status when hold signal is received Output "L" ON (but watchdog timer stops) Undefined
R/W signal, address bus, data bus, CS, BHE Programmable I/O ports P0, P1, P2, P3, P4, P5 P6, P7, P8, P9, P10
__________
HLDA Internal peripheral circuits ALE signal
(7) External bus status when the internal area is accessed
Table 1.12.7 shows the external bus status when the internal area is accessed. Table 1.12.7. External bus status when the internal area is accessed
Item Address bus SFR accessed Address output Internal ROM/RAM accessed Maintain status before accessed address of external area Data bus When read When write RD, WR, WRL, WRH BHE Floating Output data RD, WR, WRL, WRH output BHE output Floating Undefined Output "H" Maintain status before accessed status of external area CS ALE Output "H" Output "L" Output "H" Output "L"
37
Mitsubishi microcomputers
M16C / 62 Group
Bus Control (8) BCLK output
The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note). When set to "1", the output floating. Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(9) Software wait
A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address 000516) (Note) and bits 4 to 7 of the chip select control register (address 000816). A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the wait bit of the processor mode register 1. When set to "0", each bus cycle is executed in one BCLK cycle. When set to "1", each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been reset, this bit defaults to "0". When set to "1", a wait is applied to all memory areas (two or three BCLK cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring to the recommended operating conditions (main clock input oscillation frequency) of the electric character________ istics. However, when the user is using the RDY signal, the relevant bit in the chip select control register's bits 4 to 7 must be set to "0". When the wait bit of the processor mode register 1 is "0", software waits can be set independently for each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register _______ _______ correspond to chip selects CS0 to CS3. When one of these bits is set to "1", the bus cycle is executed in one BCLK cycle. When set to "0", the bus cycle is executed in two or three BCLK cycles. These bits default to "0" after the microcomputer has been reset. The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also, insert a software wait if using the multiplex bus to access the external memory area. Table 1.12.8 shows the software wait and bus cycles. Figure 1.12.5 shows example bus timing when using software waits. Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect register (address 000A16) to "1". Table 1.12.8. Software waits and bus cycles
Area SFR Internal ROM/RAM Separate bus Separate bus External memory area Separate bus Multiplex bus Multiplex bus Bus status Wait bit Invalid 0 1 0 0 1 0 1 Bits 4 to 7 of chip select control register Invalid Invalid Invalid 1 0 0 (Note) 0 0 (Note) Bus cycle 2 BCLK cycles 1 BCLK cycle 2 BCLK cycles 1 BCLK cycle 2 BCLK cycles 2 BCLK cycles 3 BCLK cycles 3 BCLK cycles
Note: When using the RDY signal, always set to "0".
38
Mitsubishi microcomputers
M16C / 62 Group
Bus Control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
< Separate bus (no wait) >
Bus cycle(Note)
Bus cycle(Note)
BCLK Write signal Read signal
Output Input
Data bus Address bus Chip select
Address
Address
< Separate bus (with wait) > Bus cycle(Note) Bus cycle(Note)
BCLK Write signal Read signal
Output Input
Data bus Address bus Chip select
Address
Address
< Multiplexed bus > Bus cycle(Note) Bus cycle(Note)
BCLK Write signal Read signal ALE Address bus Address bus/ Data bus Chip select Address Address Data output Address Address
Input
Note : These example timing charts indicate bus cycle length. After this bus cycle sometimes come read and write cycles in succession.
Figure 1.12.5. Typical bus timings using software wait
39
Mitsubishi microcomputers
M16C / 62 Group
Clock Generating Circuit
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock Generating Circuit
The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the CPU and internal peripheral units. Table 1.13.1. Main clock and sub-clock generating circuits Use of clock Main clock generating circuit Sub-clock generating circuit * CPU's operating clock source * CPU's operating clock source * Internal peripheral units' * Timer A/B's count clock operating clock source source Ceramic or crystal oscillator Crystal oscillator XIN, XOUT XCIN, XCOUT Available Available Oscillating Stopped Externally derived clock can be input
Usable oscillator Pins to connect oscillator Oscillation stop/restart function Oscillator status immediately after reset Other
Example of oscillator circuit
Figure 1.13.1 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 1.13.2 shows some examples of sub-clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 1.13.1 and 1.13.2 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.
Microcomputer
(Built-in feedback resistor)
Microcomputer
(Built-in feedback resistor)
XIN
XOUT (Note) Rd
XIN
XOUT Open
Externally derived clock CIN COUT Vcc Vss
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive capacity setting. Use the value recommended by the maker of the oscillator. When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN and XOUT following the instruction.
Figure 1.13.1. Examples of main clock
Microcomputer
(Built-in feedback resistor)
Microcomputer
(Built-in feedback resistor)
XCIN
XCOUT (Note) RCd
XCIN
XCOUT Open
Externally derived clock CCIN CCOUT Vcc Vss
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive capacity setting. Use the value recommended by the maker of the oscillator. When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XCIN and XCOUT following the instruction.
Figure 1.13.2. Examples of sub-clock
40
Mitsubishi microcomputers
M16C / 62 Group
Clock Generating Circuit Clock Control
Figure 1.13.3 shows the block diagram of the clock generating circuit.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
XCIN CM04
XCOUT 1/32
fC32 f1 f1SIO2 fC fAD f8 f32 f8SIO2 f32SIO2
Sub clock CM10 "1" Write signal SQ XIN R RESET Software reset NMI Interrupt request level judgment output WAIT instruction Main clock CM02 CM05 XOUT b a c d Divider
CM07=0 BCLK fC CM07=1
SQ R
b a
1/2 1/2 1/2 1/2 1/2
c
CM06=0 CM17,CM16=11 CM06=1 CM06=0 CM17,CM16=10
d
CM06=0 CM17,CM16=01 CM06=0 CM17,CM16=00 CM0i : Bit i at address 000616 CM1i : Bit i at address 000716 WDCi : Bit i at address 000F16
Details of divider
Figure 1.13.3. Clock generating circuit
41
Mitsubishi microcomputers
M16C / 62 Group
Clock Generating Circuit
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The following paragraphs describes the clocks generated by the clock generating circuit.
(1) Main clock
The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation. After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
(2) Sub-clock
The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub-clock oscillation has fully stabilized before switching. After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting to stop mode and at a reset.
(3) BCLK
The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by 1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expansion and the microprocessor modes. The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from highspeed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
(4) Peripheral function clock(f1, f8, f32, f1SIO2, f8SIO2,f32SIO2,fAD)
The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to "1" and then executing a WAIT instruction.
(5) fC32
This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.
(6) fC
This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.
42
Mitsubishi microcomputers
M16C / 62 Group
Clock Generating Circuit
Figure 1.13.4 shows the system clock control registers 0 and 1.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
System clock control register 0 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol CM0 Bit symbol
CM00 CM01 CM02 CM03 CM04 CM05 CM06 CM07
Address 000616 Bit name
Clock output function select bit (Valid only in single-chip mode) WAIT peripheral function clock stop bit
When reset 4816 Function
b1 b0
RW
0 0 : I/O port P57 0 1 : fC output 1 0 : f8 output 1 1 : f32 output 0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)
XCIN-XCOUT drive capacity 0 : LOW select bit (Note 2) 1 : HIGH Port XC select bit Main clock (XIN-XOUT) stop bit (Note 3, 4, 5) Main clock division select bit 0 (Note 7) System clock select bit (Note 6) 0 : I/O port 1 : XCIN-XCOUT generation 0 : On 1 : Off 0 : CM16 and CM17 valid 1 : Division by 8 mode 0 : XIN, XOUT 1 : XCIN, XCOUT
Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register. Note 2: Changes to "1" when shiffing to stop mode and at a reset. Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and operating with XIN, set this bit to "0". When main clock oscillation is operating by itself, set system clock select bit (CM07) to "1" before setting this bit to "1". Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable. Note 5: If this bit is set to "1", XOUT turns "H". The built-in feedback resistor remains being connected, so XIN turns pulled up to XOUT ("H") via the feedback resistor. Note 6: Set port Xc select bit (CM04) to "1" and stabilize the sub-clock oscillating before setting to this bit from "0" to "1". Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to "0" and stabilize the main clock oscillating before setting this bit from "1" to "0". Note 7: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. Note 8: fC32 is not included.
System clock control register 1 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
00
0
0
Symbol CM1 Bit symbol
CM10
Address 000716 Bit name
All clock stop control bit (Note4)
When reset 2016 Function
0 : Clock on 1 : All clocks off (stop mode) Always set to "0" Always set to "0" Always set to "0" Always set to "0" 0 : LOW 1 : HIGH
b7 b6
RW
Reserved bit Reserved bit Reserved bit Reserved bit CM15 CM16 CM17 XIN-XOUT drive capacity select bit (Note 2) Main clock division select bit 1 (Note 3)
0 0 : No division mode 0 1 : Division by 2 mode 1 0 : Division by 4 mode 1 1 : Division by 16 mode
Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register. Note 2: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is "0". If "1", division mode is fixed at 8. Note 4: If this bit is set to "1", XOUT turns "H", and the built-in feedback resistor is cut off. XCIN and XCOUT turn highimpedance state.
Figure 1.13.4. Clock control registers 0 and 1
43
Mitsubishi microcomputers
M16C / 62 Group
Clock Generating Circuit Clock Output
In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or fc to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address 000616) is set to "1", the output of f8 and f32 stops when a WAIT instruction is executed.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Stop Mode
Writing "1" to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC remains above 2V. Because the oscillation , BCLK, f1 to f32, f1SIO2 to f32SIO2, fC, fC32, and fAD stops in stop mode, peripheral functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2), SI/O3,4 functions provided an external clock is selected. Table 1.13.2 shows the status of the ports in stop mode. Stop mode is cancelled by a hardware reset or an interrupt. If an interrupt is to be used to cancel stop mode, that interrupt must first have been enabled. If returning by an interrupt, that interrupt routine is executed. When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division select bit 0 (bit 6 at address 000616) is set to "1". When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
Table 1.13.2. Port status during stop mode Pin
_______ _______
Memory expansion mode Microprocessor mode Retains status before stop mode
Single-chip mode
Address bus, data bus, CS0 to CS3,
________
BHE
_____ ______ ________ _________
RD, WR, WRL, WRH
__________
"H" "H" "H" Retains status before stop mode Retains status before stop mode Valid only in single-chip mode "H" Valid only in single-chip mode Retains status before stop mode
HLDA, BCLK ALE Port CLKOUT When fc selected When f8, f32 selected
44
Mitsubishi microcomputers
M16C / 62 Group
Wait Mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Wait Mode
When a WAIT instruction is executed, the BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but the BCLK and watchdog timer stop. Writing "1" to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. Table 1.13.3 shows the status of the ports in wait mode. Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, the microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the WAIT instruction was executed. Table 1.13.3. Port status during wait mode Pin
_______ _______
Memory expansion mode Microprocessor mode Retains status before wait mode
Single-chip mode
Address bus, data bus, CS0 to CS3,
________
BHE
_____ ______ ________ _________
RD, WR, WRL, WRH
__________
"H"
HLDA,BCLK ALE Port CLKOUT
"H" "H" Retains status before wait mode When fC selected Valid only in single-chip mode When f8, f32 selected Valid only in single-chip mode
Retains status before wait mode Does not stop Does not stop when the WAIT peripheral function clock stop bit is "0". When the WAIT peripheral function clock stop bit is "1", the status immediately prior to entering wait mode is maintained.
45
Mitsubishi microcomputers
M16C / 62 Group
Status Transition Of BCLK
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Status Transition Of BCLK
Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 1.13.4 shows the operating modes corresponding to the settings of system clock control registers 0 and 1. When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. The following shows the operational modes of BCLK.
(1) Division by 2 mode
The main clock is divided by 2 to obtain the BCLK.
(2) Division by 4 mode
The main clock is divided by 4 to obtain the BCLK.
(3) Division by 8 mode
The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4 mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption mode, make sure the sub-clock is oscillating stably.
(4) Division by 16 mode
The main clock is divided by 16 to obtain the BCLK.
(5) No-division mode
The main clock is divided by 1 to obtain the BCLK.
(6) Low-speed mode
fC is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the subclock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.
(7) Low power dissipation mode
fC is the BCLK and the main clock is stopped. Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.
Table 1.13.4. Operating modes dictated by settings of system clock control registers 0 and 1 CM17 CM16 CM07 CM06 CM05 CM04 Operating mode of BCLK 0 1 Invalid 1 0 Invalid Invalid 1 0 Invalid 1 0 Invalid Invalid 0 0 0 0 0 1 1 0 0 1 0 0 Invalid Invalid 0 0 0 0 0 0 1 Invalid Invalid Invalid Invalid Invalid 1 1 Division by 2 mode Division by 4 mode Division by 8 mode Division by 16 mode No-division mode Low-speed mode Low power dissipation mode
46
Mitsubishi microcomputers
M16C / 62 Group
Power control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Power control
The following is a description of the three available power control modes:
Modes
Power control is available in three modes. (a) Normal operation mode * High-speed mode Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the internal clock selected. Each peripheral function operates according to its assigned clock. * Medium-speed mode Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the BCLK. The CPU operates according to the internal clock selected. Each peripheral function operates according to its assigned clock. * Low-speed mode fC becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. Each peripheral function operates according to its assigned clock. * Low power consumption mode The main clock operating in low-speed mode is stopped. The CPU operates according to the fC clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate are those with the sub-clock selected as the count source. (b) Wait mode The CPU operation is stopped. The oscillators do not stop. (c) Stop mode All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption. Figure 1.13.5 is the state transition diagram of the above modes.
47
Mitsubishi microcomputers
M16C / 62 Group
Power control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Transition of stop mode, wait mode Reset
All oscillators stopped
WAIT instruction Interrupt WAIT instruction Interrupt WAIT instruction Interrupt
CPU operation stopped
Stop mode
All oscillators stopped
CM10 = "1" Interrupt Interrupt CM10 = "1"
Medium-speed mode (divided-by-8 mode)
Wait mode
CPU operation stopped
Stop mode
All oscillators stopped
High-speed/mediumspeed mode
Wait mode
CPU operation stopped
Stop mode
CM10 = "1" Interrupt
Low-speed/low power dissipation mode
Wait mode
Normal mode
(Refer to the following for the transition of normal mode.)
Transition of normal mode
Main clock is oscillating Sub clock is stopped Medium-speed mode (divided-by-8 mode)
CM06 = "1" BCLK : f(XIN)/8 CM07 = "0" CM06 = "1" CM04 = "1" (Notes 1, 3) CM07 = "0" (Note 1) CM06 = "1" CM04 = "0"
Main clock is oscillating CM04 = "0" Sub clock is oscillating High-speed mode
BCLK : f(XIN) CM07 = "0" CM06 = "0" CM17 = "0" CM16 = "0"
Medium-speed mode (divided-by-2 mode)
BCLK : f(XIN)/2 CM07 = "0" CM06 = "0" CM17 = "0" CM16 = "1"
Medium-speed mode (divided-by-8 mode)
BCLK : f(XIN)/8 CM07 = "0" CM06 = "1"
Main clock is oscillating Sub clock is oscillating Low-speed mode
CM07 = "0" (Note 1, 3) BCLK : f(XCIN) CM07 = "1" CM07 = "1" (Note 2)
Medium-speed mode (divided-by-4 mode)
BCLK : f(XIN)/4 CM07 = "0" CM06 = "0" CM17 = "1" CM16 = "0"
Medium-speed mode (divided-by-16 mode)
BCLK : f(XIN)/16 CM07 = "0" CM06 = "0" CM17 = "1" CM16 = "1"
CM05 = "0" CM04 = "0"
CM05 = "1"
Main clock is oscillating Sub clock is stopped
CM04 = "1"
High-speed mode
BCLK : f(XIN) CM07 = "0" CM06 = "0" CM17 = "0" CM16 = "0" CM06 = "0" (Notes 1,3)
Medium-speed mode (divided-by-2 mode)
BCLK : f(XIN)/2 CM07 = "0" CM06 = "0" CM17 = "0" CM16 = "1"
Main clock is stopped Sub clock is oscillating Low power dissipation mode
CM07 = "1" (Note 2) CM05 = "1" BCLK : f(XCIN) CM07 = "1" CM07 = "0" (Note 1) CM06 = "0" (Note 3) CM04 = "1"
Medium-speed mode (divided-by-4 mode)
BCLK : f(XIN)/4 CM07 = "0" CM06 = "0" CM17 = "1" CM16 = "0"
Medium-speed mode (divided-by-16 mode)
BCLK : f(XIN)/16 CM07 = "0" CM06 = "0" CM17 = "1" CM16 = "1"
Note 1: Switch clock after oscillation of main clock is sufficiently stable. Note 2: Switch clock after oscillation of sub clock is sufficiently stable. Note 3: Change CM06 after changing CM17 and CM16. Note 4: Transit in accordance with arrow.
Figure 1.13.5. State transition diagram of Power control mode
48
Mitsubishi microcomputers
M16C / 62 Group
Protection
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Protection
The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 1.13.6 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716), port P9 direction register (address 03F316) , SI/O3 control register (address 036216) and SI/O4 control register (address 036616) can only be changed when the respective bit in the protect register is set to "1". Therefore, important outputs can be allocated to port P9. If, after "1" (write-enabled) has been written to the port P9 direction register and SI/Oi control register (i=3,4) write-enable bit (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to "0" (write-inhibited). However, the system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and 1 write-enable bit (bit 1 at 000A16) do not automatically return to "0" after a value has been written to an address. The program must therefore be written to return these bits to "0".
Protect register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PRCR Bit symbol
PRC0
Address 000A16 Bit name
When reset XXXXX0002 Function RW
Enables writing to system clock control registers 0 and 1 (addresses 0 : Write-inhibited 1 : Write-enabled 000616 and 000716) Enables writing to processor mode 0 : Write-inhibited registers 0 and 1 (addresses 000416 1 : Write-enabled and 000516) Enables writing to port P9 direction register (address 03F316) and SI/Oi control register (i=3,4) (addresses 036216 and 036616) (Note) 0 : Write-inhibited 1 : Write-enabled
PRC1
PRC2
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
Note: Writing a value to an address after "1" is written to this bit returns the bit to "0" . Other bits do not automatically return to "0" and they must therefore be reset by the program.
Figure 1.13.6. Protect register
49
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Overview of Interrupt Type of Interrupts
Figure 1.14.1 lists the types of interrupts.
Software
Interrupt
Special
Hardware
Peripheral I/O (Note)
Note: Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system. Figure 1.14.1. Classification of interrupts
* Maskable interrupt :
An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority can be changed by priority level. * Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority cannot be changed by priority level.
50

Undefined instruction (UND instruction) Overflow (INTO instruction) BRK instruction INT instruction Reset NMI ________ DBC Watchdog timer Single step Address matched
_______

Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Software Interrupts
A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts. * Undefined instruction interrupt An undefined instruction interrupt occurs when executing the UND instruction. * Overflow interrupt An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to "1". The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB * BRK interrupt A BRK interrupt occurs when executing the BRK instruction. * INT interrupt An INT interrupt occurs when specifying one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/ O interrupt does. The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved. So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to "0" and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.
51
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Hardware Interrupts
Hardware interrupts are classified into two types -- special interrupts and peripheral I/O interrupts. (1) Special interrupts Special interrupts are non-maskable interrupts. * Reset ____________ Reset occurs if an "L" is input to the RESET pin. _______ * NMI interrupt _______ _______ An NMI interrupt occurs if an "L" is input to the NMI pin. ________ * DBC interrupt This interrupt is exclusively for the debugger, do not use it in other circumstances. * Watchdog timer interrupt Generated by the watchdog timer. * Single-step interrupt This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to "1", a single-step interrupt occurs after one instruction is executed. * Address match interrupt An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to "1". If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs. (2) Peripheral I/O interrupts A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts. * Bus collision detection interrupt This is an interrupt that the serial I/O bus collision detection generates. * DMA0 interrupt, DMA1 interrupt These are interrupts that DMA generates. * Key-input interrupt ___ A key-input interrupt occurs if an "L" is input to the KI pin. * A-D conversion interrupt This is an interrupt that the A-D converter generates. * UART0, UART1, UART2/NACK, SI/O3 and SI/O4 transmission interrupt These are interrupts that the serial I/O transmission generates. * UART0, UART1, UART2/ACK, SI/O3 and SI/O4 reception interrupt These are interrupts that the serial I/O reception generates. * Timer A0 interrupt through timer A4 interrupt These are interrupts that timer A generates * Timer B0 interrupt through timer B5 interrupt These are interrupts that timer B generates. ________ ________ * INT0 interrupt through INT5 interrupt ______ ______ An INT interrupt occurs if either a rising edge or a falling edge or a both edge is input to the INT pin.
52
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupts and Interrupt Vector Tables
If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 1.14.2 shows the format for specifying the address. Two types of interrupt vector tables are available -- fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.
MSB
LSB Low address Mid address 0000 0000 High address 0000
Vector address + 0 Vector address + 1 Vector address + 2 Vector address + 3
Figure 1.14.2. Format for specifying interrupt vector addresses
* Fixed vector tables The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 1.14.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables. Table 1.14.1. Interrupts assigned to the fixed vector tables and addresses of vector tables Interrupt source Undefined instruction Overflow BRK instruction Vector table addresses Address (L) to address (H) FFFDC16 to FFFDF16 FFFE016 to FFFE316 FFFE416 to FFFE716 Remarks Interrupt on UND instruction Interrupt on INTO instruction If the vector contains FF16, program execution starts from the address shown by the vector in the variable vector table There is an address-matching interrupt enable bit Do not use
Address match FFFE816 to FFFEB16 Single step (Note) FFFEC16 to FFFEF16 Watchdog timer FFFF016 to FFFF316 ________ DBC (Note) FFFF416 to FFFF716 Do not use _______ NMI FFFF816 to FFFFB16 External interrupt by input to NMI pin Reset FFFFC16 to FFFFF16 Note: Interrupts used for debugging purposes only.
53
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Variable vector tables The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 1.14.2 shows the interrupts assigned to the variable vector tables and addresses of vector tables. Table 1.14.2. Interrupts assigned to the variable vector tables and addresses of vector tables
Software interrupt number Software interrupt number 0 Vector table address
Address (L) to address (H)
Interrupt source BRK instruction
Remarks Cannot be masked I flag
+0 to +3 (Note 1)
Software interrupt number 4 Software interrupt number 5 Software interrupt number 6 Software interrupt number 7 Software interrupt number 8 Software interrupt number 9 Software interrupt number 10 Software interrupt number 11 Software interrupt number 12 Software interrupt number 13 Software interrupt number 14 Software interrupt number 15 Software interrupt number 16 Software interrupt number 17 Software interrupt number 18 Software interrupt number 19 Software interrupt number 20 Software interrupt number 21 Software interrupt number 22 Software interrupt number 23 Software interrupt number 24 Software interrupt number 25 Software interrupt number 26 Software interrupt number 27 Software interrupt number 28 Software interrupt number 29 Software interrupt number 30 Software interrupt number 31 Software interrupt number 32 to Software interrupt number 63
+16 to +19 (Note 1) +20 to +23 (Note 1) +24 to +27 (Note 1) +28 to +31 (Note 1) +32 to +35 (Note 1) +36 to +39 (Note 1) +40 to +43 (Note 1) +44 to +47 (Note 1) +48 to +51 (Note 1) +52 to +55 (Note 1) +56 to +59 (Note 1) +60 to +63 (Note 1) +64 to +67 (Note 1) +68 to +71 (Note 1) +72 to +75 (Note 1) +76 to +79 (Note 1) +80 to +83 (Note 1) +84 to +87 (Note 1) +88 to +91 (Note 1) +92 to +95 (Note 1) +96 to +99 (Note 1) +100 to +103 (Note 1) +104 to +107 (Note 1) +108 to +111 (Note 1) +112 to +115 (Note 1) +116 to +119 (Note 1) +120 to +123 (Note 1) +124 to +127 (Note 1) +128 to +131 (Note 1) to +252 to +255 (Note 1)
INT3 Timer B5 Timer B4 Timer B3 SI/O4/INT5 SI/O3/INT4 (Note 2) (Note 2)
Bus collision detection DMA0 DMA1 Key input interrupt A-D UART2 transmit/NACK (Note 3) UART2 receive/ACK (Note 3) UART0 transmit UART0 receive UART1 transmit UART1 receive Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1 Timer B2 INT0 INT1 INT2
Software interrupt
Cannot be masked I flag
Note 1: Address relative to address in interrupt table register (INTB). Note 2: It is selected by interrupt request cause bit (bit 6, 7 in address 035F16 ). Note 3: When IIC mode is selected, NACK and ACK interrupts are selected.
54
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Control
Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the priority to be accepted. What is described here does not apply to non-maskable interrupts. Enable or disable a maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG). Figure 1.14.3 shows the memory map of the interrupt control registers.
55
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt control register (Note2)
Symbol TBiIC(i=3 to 5) BCNIC DMiIC(i=0, 1) KUPIC ADIC SiTIC(i=0 to 2) SiRIC(i=0 to 2) TAiIC(i=0 to 4) TBiIC(i=0 to 2) Address 004516 to 004716 004A16 004B16, 004C16 004D16 004E16 005116, 005316, 004F16 005216, 005416, 005016 005516 to 005916 005A16 to 005C16 When reset XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002 XXXXX0002
b7
b6
b5
b4
b3
b2
b1
b0
Bit symbol
ILVL0
Bit name
Interrupt priority level select bit
b2 b1 b0
Function
000: 001: 010: 011: 100: 101: 110: 111: Level 0 (interrupt disabled) Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
R
W
ILVL1
ILVL2
IR
Interrupt request bit
0 : Interrupt not requested 1 : Interrupt requested
(Note 1)
Nothing is assigned.
In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1). Note 2: To rewrite the interrupt control register, do so at a point that dose not generate the interrupt request for that register. For details, see the precautions for interrupts.
b7
b6
b5
b4
b3
b2
b1
b0
0
Symbol Address INTiIC(i=3) 004416 SiIC/INTjIC (i=4, 3) 004816, 004916 (j=5, 4) 004816, 004916 INTiIC(i=0 to 2) 005D16 to 005F16
When reset XX00X0002 XX00X0002 XX00X0002 XX00X0002
Bit symbol
ILVL0
Bit name
Interrupt priority level select bit
b2 b1 b0
Function
0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1 0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7 0: Interrupt not requested 1: Interrupt requested 0 : Selects falling edge 1 : Selects rising edge Always set to "0"
R
W
ILVL1
ILVL2
IR
Interrupt request bit
(Note 1)
POL
Polarity select bit
Reserved bit Nothing is assigned.
In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1). Note 2: To rewrite the interrupt control register, do so at a point that dose not generate the interrupt request for that register. For details, see the precautions for interrupts.
Figure 1.14.3. Interrupt control registers
56
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Enable Flag (I flag)
The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this flag to "1" enables all maskable interrupts; setting it to "0" disables all maskable interrupts. This flag is set to "0" after reset.
Interrupt Request Bit
The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").
Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL. Therefore, setting the interrupt priority level to "0" disables the interrupt. Table 1.14.3 shows the settings of interrupt priority levels and Table 1.14.4 shows the interrupt levels enabled, according to the consist of the IPL. The following are conditions under which an interrupt is accepted: * interrupt enable flag (I flag) = 1 * interrupt request bit = 1 * interrupt priority level > IPL The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are independent, and they are not affected by one another.
Table 1.14.3. Settings of interrupt priority levels
Interrupt priority level select bit
b2 b1 b0
Table 1.14.4. Interrupt levels enabled according to the contents of the IPL
IPL
IPL2 IPL1 IPL0
Interrupt priority level
Priority order
Enabled interrupt priority levels
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
Level 0 (interrupt disabled) Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 High Low
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
Interrupt levels 1 and above are enabled Interrupt levels 2 and above are enabled Interrupt levels 3 and above are enabled Interrupt levels 4 and above are enabled Interrupt levels 5 and above are enabled Interrupt levels 6 and above are enabled Interrupt levels 7 and above are enabled All maskable interrupts are disabled
57
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Rewrite the interrupt control register
To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:
Example 1:
INT_SWITCH1: FCLR I AND.B #00h, 0055h NOP NOP FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts.
Example 2:
INT_SWITCH2: FCLR I AND.B #00h, 0055h MOV.W MEM, R0 FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Dummy read. ; Enable interrupts.
Example 3:
INT_SWITCH3: PUSHC FLG FCLR I AND.B #00h, 0055h POPC FLG ; Push Flag register onto stack ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.
When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register. Instructions : AND, OR, BCLR, BSET
58
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Sequence
An interrupt sequence -- what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed -- is described here. If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence. In the interrupt sequence, the processor carries out the following in sequence given: (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016. After this, the corresponding interrupt request bit becomes "0". (2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU. (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed) (4) Saves the content of the temporary register (Note) within the CPU in the stack area. (5) Saves the content of the program counter (PC) in the stack area. (6) Sets the interrupt priority level of the accepted instruction in the IPL. After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine. Note: This register cannot be utilized by the user.
Interrupt Response Time
'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 1.14.4 shows the interrupt response time.
Interrupt request generated
Interrupt request acknowledged Time
Instruction (a)
Interrupt sequence (b)
Instruction in interrupt routine
Interrupt response time
(a) Time from interrupt request is generated to when the instruction then under execution is completed. (b) Time in which the instruction sequence is executed.
Figure 1.14.4. Interrupt response time
59
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the DIVX instruction (without wait). Time (b) is as shown in Table 1.14.5. Table 1.14.5. Time required for executing the interrupt sequence
Interrupt vector address Even Even Odd (Note 2) Odd (Note 2) Stack pointer (SP) value Even Odd Even Odd
________
16-Bit bus, without wait 18 cycles (Note 1) 19 cycles (Note 1) 19 cycles (Note 1) 20 cycles (Note 1)
8-Bit bus, without wait 20 cycles (Note 1) 20 cycles (Note 1) 20 cycles (Note 1) 20 cycles (Note 1)
Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence interrupt or of a single-step interrupt. Note 2: Locate an interrupt vector address in an even address, if possible.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
BCLK Address bus Data bus R W The indeterminate segment is dependent on the queue buffer. If the queue buffer is ready to take an instruction, a read cycle occurs. Address 0000
Interrupt information
Indeterminate Indeterminate Indeterminate
SP-2 SP-2 contents
SP-4 SP-4 contents
vec vec contents
vec+2 vec+2 contents
PC
Figure 1.14.5. Time required for executing the interrupt sequence
Variation of IPL when Interrupt Request is Accepted
If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown in Table 1.14.6 is set in the IPL.
Table 1.14.6. Relationship between interrupts without interrupt priority levels and IPL Interrupt sources without priority levels
_______
Value set in the IPL 7 0 Not changed
Watchdog timer, NMI Reset Other
60
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Saving Registers
In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter (PC) are saved in the stack area. First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8 lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the program counter. Figure 1.14.6 shows the state of the stack as it was before the acceptance of the interrupt request, and the state the stack after the acceptance of the interrupt request. Save other necessary registers at the beginning of the interrupt routine using software. Using the PUSHM instruction alone can save all the registers except the stack pointer (SP).
Address MSB
Stack area LSB
Address MSB
Stack area LSB [SP] New stack pointer value
m-4 m-3 m-2 m-1 m m+1 Content of previous stack Content of previous stack [SP] Stack pointer value before interrupt occurs
m-4 m-3 m-2 m-1 m m+1
Program counter (PCL) Program counter (PCM) Flag register (FLGL) Flag register (FLGH) Program counter (PCH)
Content of previous stack Content of previous stack
Stack status before interrupt request is acknowledged
Stack status after interrupt request is acknowledged
Figure 1.14.6. State of stack before and after acceptance of interrupt request
61
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The operation of saving registers carried out in the interrupt sequence is dependent on whether the content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at a time. Figure 1.14.7 shows the operation of the saving registers. Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the stack pointer indicated by the U flag. Otherwise, it is the interrupt stack pointer (ISP).
(1) Stack pointer (SP) contains even number
Address Stack area Sequence in which order registers are saved
[SP] - 5 (Odd) [SP] - 4 (Even) [SP] - 3(Odd) [SP] - 2 (Even) [SP] - 1(Odd) [SP] (Even) Finished saving registers in two operations. Program counter (PCL) Program counter (PCM) Flag register (FLGL) Flag register (FLGH) Program counter (PCH) (1) Saved simultaneously, all 16 bits (2) Saved simultaneously, all 16 bits
(2) Stack pointer (SP) contains odd number
Address Stack area Sequence in which order registers are saved
[SP] - 5 (Even) [SP] - 4(Odd) [SP] - 3 (Even) [SP] - 2(Odd) [SP] - 1 (Even) [SP] (Odd) Finished saving registers in four operations. Program counter (PCL) Program counter (PCM) Flag register (FLGL) Flag register (FLGH) Program counter (PCH)
(3) (4) (1) (2)
Saved simultaneously, all 8 bits
Note: [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged. After registers are saved, the SP content is [SP] minus 4.
Figure 1.14.7. Operation of saving registers
62
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Returning from an Interrupt Routine
Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register (FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter (PC), both of which have been saved in the stack area. Then control returns to the program that was being executed before the acceptance of the interrupt request, so that the suspended process resumes. Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.
Interrupt Priority
If there are two or more interrupt requests occurring at a point in time within a single sampling (checking whether interrupt requests are made), the interrupt assigned a higher priority is accepted. Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware priority is accepted. Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority), watchdog timer interrupt, etc. are regulated by hardware. Figure 1.14.8 shows the priorities of hardware interrupts. Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.
_______
________
Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match
Figure 1.14.8. Hardware interrupts priorities
Interrupt resolution circuit
When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest priority level. Figure 1.14.9 shows the circuit that judges the interrupt priority level.
63
Mitsubishi microcomputers
M16C / 62 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Priority level of each interrupt INT1 Timer B2 Timer B0 Timer A3 Timer A1 Timer B4 INT3 INT2 INT0 Timer B1 Timer A4 Timer A2 Timer B3 Timer B5 UART1 reception UART0 reception UART2 reception/ACK A-D conversion DMA1 Bus collision detection Serial I/O4/INT5 Timer A0 UART1 transmission UART0 transmission UART2 transmission/NACK Key input interrupt DMA0 Serial I/O3/INT4
Processor interrupt priority level (IPL)
Level 0 (initial value)
High
Priority of peripheral I/O interrupts (if priority levels are same)
Low
Interrupt request level judgment output To clock generating circuit (Fig.1.13.3)
Interrupt enable flag (I flag) Address match Watchdog timer DBC NMI Reset
Interrupt request accepted
Figure 1.14.9. Maskable interrupts priorities (peripheral I/O interrupts)
64
Mitsubishi microcomputers
______
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
INT Interrupt
______
INT Interrupt
________ ________
INT0 to INT5 are triggered by the edges of external inputs. The edge polarity is selected using the polarity select bit. ________ Of interrupt control registers, 004816 is used both as serial I/O4 and external interrupt INT5 input control ________ register, and 004916 is used both as serial I/O3 and as external interrupt INT4 input control register. Use the interrupt request cause select bits - bits 6 and 7 of the interrupt request cause select register (035F16) - to specify which interrupt request cause to select. After having set an interrupt request cause, be sure to clear the corresponding interrupt request bit before enabling an interrupt. Either of the interrupt control registers - 004816, 004916 - has the polarity-switching bit. Be sure to set this bit to "0" to select an serial I/O as the interrupt request cause. As for external interrupt input, an interrupt can be generated both at the rising edge and at the falling edge by setting "1" in the INTi interrupt polarity switching bit of the interrupt request cause select register (035F16). To select both edges, set the polarity switching bit of the corresponding interrupt control register to `falling edge' ("0"). Figure 1.14.10 shows the Interrupt request cause select register.
Interrupt request cause select register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol IFSR
Bit symbol
Address 035F16
When reset 0016
Bit name
INT0 interrupt polarity switching bit INT1 interrupt polarity switching bit INT2 interrupt polarity switching bit INT3 interrupt polarity switching bit INT4 interrupt polarity switching bit INT5 interrupt polarity switching bit Interrupt request cause select bit Interrupt request cause select bit
Function
0 : One edge 1 : Two edges 0 : One edge 1 : Two edges 0 : One edge 1 : Two edges 0 : One edge 1 : Two edges 0 : One edge 1 : Two edges 0 : One edge 1 : Two edges 0 : SIO3 1 : INT4 0 : SIO4 1 : INT5
RW
IFSR0 IFSR1 IFSR2 IFSR3 IFSR4 IFSR5 IFSR6 IFSR7
Figure 1.14.10. Interrupt request cause select register
65
Mitsubishi microcomputers
________
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
NMI Interrupt
______
NMI Interrupt
______ ______ ______
An NMI interrupt is generated when the input to the P85/NMI pin changes from "H" to "L". The NMI interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03F016). This pin cannot be used as a normal port input.
Key Input Interrupt
If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A-D input ports. Figure 1.14.11 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.
Port P104-P107 pull-up select bit Pull-up transistor
Key input interrupt control register
Port P107 direction register Port P107 direction register
(address 004D16)
P107/KI3 Pull-up transistor P106/KI2 Pull-up transistor P105/KI1 Pull-up transistor P104/KI0 Port P104 direction register Port P105 direction register Port P106 direction register
Interrupt control circuit
Key input interrupt request
Figure 1.14.11. Block diagram of key input interrupt
66
Mitsubishi microcomputers
M16C / 62 Group
Address Match Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Address Match Interrupt
An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Two address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC) for an address match interrupt varies depending on the instruction being executed. Note that when using the external data bus in width of 8 bits, the address match interrupt cannot be used for external area. Figure 1.14.12 shows the address match interrupt-related registers.
Address match interrupt enable register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol AIER Bit symbol
Address 000916 Bit name Address match interrupt 0 enable bit Address match interrupt 1 enable bit
When reset XXXXXX002 Function 0 : Interrupt disabled 1 : Interrupt enabled 0 : Interrupt disabled 1 : Interrupt enabled RW
AIER0 AIER1
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminated.
Address match interrupt register i (i = 0, 1)
(b23) b7 (b19) b3 (b16)(b15) b0 b7 (b8) b0 b7 b0
Symbol RMAD0 RMAD1
Address 001216 to 001016 001616 to 001416
When reset X0000016 X0000016
Function Address setting register for address match interrupt
Values that can be set R W 0000016 to FFFFF16
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminated.
Figure 1.14.12. Address match interrupt-related registers
67
Mitsubishi microcomputers
M16C / 62 Group
Precautions for Interrupts
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Precautions for Interrupts (1) Reading address 0000016
* When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence. The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0". Though the interrupt is generated, the interrupt routine may not be executed. Do not read address 0000016 by software.
(2) Setting the stack pointer
* The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in _______ the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any _______ interrupts including the NMI interrupt is prohibited.
_______
(3) The NMI interrupt
_______ _______
*The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused. _______ * The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time _______ when the NMI interrupt is input. _______ * Do not reset the CPU with the input to the NMI pin being in the "L" state. _______ * Do not attempt to go into stop mode with the input to the NMI pin being in the "L" state. With the input to _______ the NMI being in the "L" state, the CM10 is fixed to "0", so attempting to go into stop mode is turned down. _______ * Do not attempt to go into wait mode with the input to the NMI pin being in the "L" state. With the input to _______ the NMI pin being in the "L" state, the CPU stops but the oscillation does not stop, so no power is saved. In this instance, the CPU is returned to the normal state by a later interrupt. _______ * Signals input to the NMI pin require an "L" level of 1 clock or more, from the operation clock of the CPU.
(4) External interrupt
________
* Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INT0 ________ through INT5 regardless of the CPU operation clock. ________ ________ * When the polarity of the INT0 to INT5 pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 1.14.13 shows the procedure for ______ changing the INT interrupt generate factor.
68
Mitsubishi microcomputers
M16C / 62 Group
Precautions for Interrupts
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clear the interrupt enable flag to "0" (Disable interrupt)
Set the interrupt priority level to level 0 (Disable INTi interrupt)
Set the polarity select bit
Clear the interrupt request bit to "0"
Set the interrupt priority level to level 1 to 7 (Enable the accepting of INTi interrupt request)
Set the interrupt enable flag to "1" (Enable interrupt)
______
Figure 1.14.13. Switching condition of INT interrupt request
(5) Rewrite the interrupt control register
* To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:
Example 1:
INT_SWITCH1: FCLR I AND.B #00h, 0055h NOP NOP FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts.
Example 2:
INT_SWITCH2: FCLR I AND.B #00h, 0055h MOV.W MEM, R0 FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Dummy read. ; Enable interrupts.
Example 3:
INT_SWITCH3: PUSHC FLG FCLR I AND.B #00h, 0055h POPC FLG ; Push Flag register onto stack ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.
* When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register. Instructions : AND, OR, BCLR, BSET
69
Mitsubishi microcomputers
M16C / 62 Group
Watchdog Timer Watchdog Timer
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calculated as given below. The watchdog timer's period is, however, subject to an error due to the prescaler. With XIN chosen for BCLK Watchdog timer period = prescaler dividing ratio (16 or 128) X watchdog timer count (32768) BCLK With XCIN chosen for BCLK Watchdog timer period = prescaler dividing ratio (2) X watchdog timer count (32768) BCLK
For example, suppose that BCLK runs at 16 MHz and that 16 has been chosen for the dividing ratio of the prescaler, then the watchdog timer's period becomes approximately 32.8 ms. The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16). Figure 1.15.1 shows the block diagram of the watchdog timer. Figure 1.15.2 shows the watchdog timerrelated registers.
Prescaler
"CM07 = 0" "WDC7 = 0"
1/16
BCLK HOLD
1/128
"CM07 = 0" "WDC7 = 1"
Watchdog timer
Watchdog timer interrupt request
"CM07 = 1"
1/2
Write to the watchdog timer start register (address 000E16)
Set to "7FFF16"
RESET
Figure 1.15.1. Block diagram of watchdog timer
70
Mitsubishi microcomputers
M16C / 62 Group
Watchdog Timer
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Watchdog timer control register
b7 b6 b5 b4 b3 b2 b1 b0
00
Symbol WDC Bit symbol
Address 000F16 Bit name
When reset 000XXXXX2 Function RW
High-order bit of watchdog timer Reserved bit Reserved bit
WDC7
Must always be set to "0" Must always be set to "0" Prescaler select bit 0 : Divided by 16 1 : Divided by 128
Watchdog timer start register
b7 b0
Symbol WDTS
Address 000E16
When reset Indeterminate RW
Function The watchdog timer is initialized and starts counting after a write instruction to this register. The watchdog timer value is always initialized to "7FFF16" regardless of whatever value is written.
Figure 1.15.2. Watchdog timer control and start registers
71
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMAC
This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 1.16.1 shows the block diagram of the DMAC. Table 1.16.1 shows the DMAC specifications. Figures 1.16.2 to 1.16.4 show the registers used by the DMAC.
Address bus
DMA0 source pointer SAR0(20) (addresses 002216 to 002016) DMA0 destination pointer DAR0 (20)
(addresses 002616 to 002416)
DMA0 forward address pointer (20) (Note)
DMA0 transfer counter reload register TCR0 (16)
DMA1 source pointer SAR1 (20) (addresses 003216 to 003016) DMA1 destination pointer DAR1 (20)
(addresses 003616 to 003416)
(addresses 002916, 002816) DMA0 transfer counter TCR0 (16)
DMA1 transfer counter reload register TCR1 (16)
DMA1 forward address pointer (20) (Note)
(addresses 003916, 003816) DMA1 transfer counter TCR1 (16)
DMA latch high-order bits DMA latch low-order bits
Data bus low-order bits Data bus high-order bits
Note: Pointer is incremented by a DMA request.
Figure 1.16.1. Block diagram of DMAC
Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level. The DMA transfer doesn't affect any interrupts either. If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the number of transfers. For details, see the description of the DMA request bit.
72
Mitsubishi microcomputers
M16C / 62 Group
DMAC
Table 1.16.1. DMAC specifications Item No. of channels Transfer memory space
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Specification 2 (cycle steal method) * From any address in the 1M bytes space to a fixed address * From a fixed address to any address in the 1M bytes space * From a fixed address to a fixed address (Note that DMA-related registers [002016 to 003F16] cannot be accessed) 128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)
________ ________ ________ ________
Maximum No. of bytes transferred DMA request factors (Note)
Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1) or both edge Timer A0 to timer A4 interrupt requests Timer B0 to timer B5 interrupt requests UART0 transfer and reception interrupt requests UART1 transfer and reception interrupt requests UART2 transfer and reception interrupt requests Serial I/O3, 4 interrpt requests A-D conversion interrupt requests Software triggers Channel priority DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously Transfer unit 8 bits or 16 bits Transfer address direction forward/fixed (forward direction cannot be specified for both source and destination simultaneously) Transfer mode * Single transfer mode After the transfer counter underflows, the DMA enable bit turns to "0", and the DMAC turns inactive * Repeat transfer mode After the transfer counter underflows, the value of the transfer counter reload register is reloaded to the transfer counter. The DMAC remains active unless a "0" is written to the DMA enable bit. DMA interrupt request generation timing When an underflow occurs in the transfer counter Active When the DMA enable bit is set to "1", the DMAC is active. When the DMAC is active, data transfer starts every time a DMA transfer request signal occurs. Inactive * When the DMA enable bit is set to "0", the DMAC is inactive. * After the transfer counter underflows in single transfer mode At the time of starting data transfer immediately after turning the DMAC active, the Forward address pointer and value of one of source pointer and destination pointer - the one specified for the reload timing for transfer forward direction - is reloaded to the forward direction address pointer, and the value counter of the transfer counter reload register is reloaded to the transfer counter. Writing to register Registers specified for forward direction transfer are always write enabled. Registers specified for fixed address transfer are write-enabled when the DMA enable bit is "0". Reading the register Can be read at any time. However, when the DMA enable bit is "1", reading the register set up as the forward register is the same as reading the value of the forward address pointer. Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level.
73
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA0 request cause select register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol DM0SL
Address 03B816
When reset 0016
Bit symbol
Bit name DMA request cause select bit
b3 b2 b1 b0
Function
0 0 0 0 : Falling edge of INT0 pin 0 0 0 1 : Software trigger 0 0 1 0 : Timer A0 0 0 1 1 : Timer A1 0 1 0 0 : Timer A2 0 1 0 1 : Timer A3 0 1 1 0 : Timer A4 (DMS=0) /two edges of INT0 pin (DMS=1) 0 1 1 1 : Timer B0 (DMS=0) Timer B3 (DMS=1) 1 0 0 0 : Timer B1 (DMS=0) Timer B4 (DMS=1) 1 0 0 1 : Timer B2 (DMS=0) Timer B5 (DMS=1) 1 0 1 0 : UART0 transmit 1 0 1 1 : UART0 receive 1 1 0 0 : UART2 transmit 1 1 0 1 : UART2 receive 1 1 1 0 : A-D conversion 1 1 1 1 : UART1 transmit
R
W
DSEL0
DSEL1
DSEL2
DSEL3
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
DMS DSR
DMA request cause expansion bit Software DMA request bit
0 : Normal 1 : Expanded cause If software trigger is selected, a DMA request is generated by setting this bit to "1" (When read, the value of this bit is always "0")
Figure 1.16.2. DMAC register (1)
74
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA1 request cause select register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol DM1SL
Address 03BA16
When reset 0016
Bit symbol
Bit name DMA request cause select bit
b3 b2 b1 b0
Function
0 0 0 0 : Falling edge of INT1 pin 0 0 0 1 : Software trigger 0 0 1 0 : Timer A0 0 0 1 1 : Timer A1 0 1 0 0 : Timer A2 0 1 0 1 : Timer A3(DMS=0) /serial I/O3 (DMS=1) 0 1 1 0 : Timer A4 (DMS=0) /serial I/O4 (DMS=1) 0 1 1 1 : Timer B0 (DMS=0) /two edges of INT1 (DMS=1) 1 0 0 0 : Timer B1 1 0 0 1 : Timer B2 1 0 1 0 : UART0 transmit 1 0 1 1 : UART0 receive 1 1 0 0 : UART2 transmit 1 1 0 1 : UART2 receive 1 1 1 0 : A-D conversion 1 1 1 1 : UART1 receive
R
W
DSEL0
DSEL1
DSEL2
DSEL3
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
DMS DSR
DMA request cause expansion bit Software DMA request bit
0 : Normal 1 : Expanded cause If software trigger is selected, a DMA request is generated by setting this bit to "1" (When read, the value of this bit is always "0")
DMAi control register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol DMiCON(i=0,1)
Address 002C16, 003C16
When reset 00000X002
Bit symbol DMBIT DMASL DMAS DMAE DSD DAD
Bit name Transfer unit bit select bit Repeat transfer mode select bit DMA request bit (Note 1) DMA enable bit Source address direction select bit (Note 3) 0 : 16 bits 1 : 8 bits
Function
R
W
0 : Single transfer 1 : Repeat transfer 0 : DMA not requested 1 : DMA requested 0 : Disabled 1 : Enabled 0 : Fixed 1 : Forward
(Note 2)
Destination address 0 : Fixed direction select bit (Note 3) 1 : Forward
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Note 1: DMA request can be cleared by resetting the bit. Note 2: This bit can only be set to "0". Note 3: Source address direction select bit and destination address direction select bit cannot be set to "1" simultaneously.
Figure 1.16.3. DMAC register (2)
75
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMAi source pointer (i = 0, 1)
(b23) b7 (b19) b3 (b16)(b15) b0 b7 (b8) b0 b7 b0
Symbol SAR0 SAR1
Address 002216 to 002016 003216 to 003016 Transfer count specification
When reset Indeterminate Indeterminate
Function * Source pointer Stores the source address
RW
0000016 to FFFFF16
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
DMAi destination pointer (i = 0, 1)
(b23) b7 (b19) b3 (b16)(b15) b0 b7 (b8) b0 b7 b0
Symbol DAR0 DAR1
Address 002616 to 002416 003616 to 003416 Transfer count specification
When reset Indeterminate Indeterminate RW
Function * Destination pointer Stores the destination address
0000016 to FFFFF16
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
DMAi transfer counter (i = 0, 1)
(b15) b7 (b8) b0 b7 b0
Symbol TCR0 TCR1
Address 002916, 002816 003916, 003816
When reset Indeterminate Indeterminate RW
Function * Transfer counter Set a value one less than the transfer count
Transfer count specification 000016 to FFFF16
Figure 1.16.4. DMAC register (3)
76
Mitsubishi microcomputers
M16C / 62 Group
DMAC (1) Transfer cycle
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted. (a) Effect of source and destination addresses When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses. (b) Effect of BYTE pin level When transferring 16-bit data over an 8-bit data bus (BYTE pin = "H") in memory expansion mode and microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are required for reading the data and two are required for writing the data. Also, in contrast to when the CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin. (c) Effect of software wait When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK. Figure 1.16.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 1.16.5, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.
77
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) 8-bit transfers 16-bit transfers from even address and the source address is even.
BCLK Address bus RD signal WR signal Data bus
CPU use Source Destination Dummy cycle CPU use CPU use Source Destination Dummy cycle CPU use
(2) 16-bit transfers and the source address is odd Transferring 16-bit data on an 8-bit data bus (In this case, there are also two destination write cycles).
BCLK Address bus RD signal WR signal Data bus
CPU use Source Source + 1 Destination Dummy cycle CPU use CPU use Source Source + 1 Destination Dummy cycle CPU use
(3) One wait is inserted into the source read under the conditions in (1)
BCLK Address bus RD signal WR signal Data bus
CPU use Source Destination Dummy cycle CPU use CPU use Source Destination Dummy cycle CPU use
(4) One wait is inserted into the source read under the conditions in (2) (When 16-bit data is transferred on an 8-bit data bus, there are two destination write cycles).
BCLK Address bus RD signal WR signal Data bus
CPU use Source Source + 1 Destination Dummy cycle CPU use CPU use Source Source + 1 Destination Dummy cycle CPU use
Note: The same timing changes occur with the respective conditions at the destination as at the source.
Figure 1.16.5. Example of the transfer cycles for a source read
78
Mitsubishi microcomputers
M16C / 62 Group
DMAC (2) DMAC transfer cycles
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Any combination of even or odd transfer read and write addresses is possible. Table 1.16.2 shows the number of DMAC transfer cycles. The number of DMAC transfer cycles can be calculated as follows: No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k Table 1.16.2. No. of DMAC transfer cycles Transfer unit Memory expansion mode Bus width Access address Microprocessor mode No. of read No. of write No. of read No. of write cycles cycles cycles cycles 16-bit Even 1 1 1 1 (BYTE= "L") Odd 1 1 1 1 8-bit Even -- -- 1 1 (BYTE = "H") Odd -- -- 1 1 16-bit Even 1 1 1 1 (BYTE = "L") Odd 2 2 2 2 8-bit Even -- -- 2 2 (BYTE = "H") Odd -- -- 2 2 Single-chip mode
8-bit transfers (DMBIT= "1")
16-bit transfers (DMBIT= "0")
Coefficient j, k Internal memory Internal ROM/RAM Internal ROM/RAM No wait With wait 1 2 SFR area 2 External memory Separate bus Separate bus No wait With wait 1 2 Multiplex bus 3
79
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA enable bit
Setting the DMA enable bit to "1" makes the DMAC active. The DMAC carries out the following operations at the time data transfer starts immediately after DMAC is turned active. (1) Reloads the value of one of the source pointer and the destination pointer - the one specified for the forward direction - to the forward direction address pointer. (2) Reloads the value of the transfer counter reload register to the transfer counter. Thus overwriting "1" to the DMA enable bit with the DMAC being active carries out the operations given above, so the DMAC operates again from the initial state at the instant "1" is overwritten to the DMA enable bit.
DMA request bit
The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of DMA request factors for each channel. DMA request factors include the following. * Factors effected by using the interrupt request signals from the built-in peripheral functions and software DMA factors (internal factors) effected by a program. * External factors effected by utilizing the input from external interrupt signals. For the selection of DMA request factors, see the descriptions of the DMAi factor selection register. The DMA request bit turns to "1" if the DMA transfer request signal occurs regardless of the DMAC's state (regardless of whether the DMA enable bit is set "1" or to "0"). It turns to "0" immediately before data transfer starts. In addition, it can be set to "0" by use of a program, but cannot be set to "1". There can be instances in which a change in DMA request factor selection bit causes the DMA request bit to turn to "1". So be sure to set the DMA request bit to "0" after the DMA request factor selection bit is changed. The DMA request bit turns to "1" if a DMA transfer request signal occurs, and turns to "0" immediately before data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the DMA request bit, if read by use of a program, turns out to be "0" in most cases. To examine whether the DMAC is active, read the DMA enable bit. Here follows the timing of changes in the DMA request bit.
(1) Internal factors
Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to "1" due to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to turn to "1" due to several factors. Turning the DMA request bit to "1" due to an internal factor is timed to be effected immediately before the transfer starts.
(2) External factors
An external factor is a factor caused to occur by the leading edge of input from the INTi pin (i depends on which DMAC channel is used). Selecting the INTi pins as external factors using the DMA request factor selection bit causes input from these pins to become the DMA transfer request signals. The timing for the DMA request bit to turn to "1" when an external factor is selected synchronizes with the signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes with the trailing edge of the input signal to each INTi pin, for example). With an external factor selected, the DMA request bit is timed to turn to "0" immediately before data transfer starts similarly to the state in which an internal factor is selected.
80
Mitsubishi microcomputers
M16C / 62 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(3) The priorities of channels and DMA transfer timing
If a DMA transfer request signal falls on a single sampling cycle (a sampling cycle means one period from the leading edge to the trailing edge of BCLK), the DMA request bits of applicable channels concurrently turn to "1". If the channels are active at that moment, DMA0 is given a high priority to start data transfer. When DMA0 finishes data transfer, it gives the bus right to the CPU. When the CPU finishes single bus access, then DMA1 starts data transfer and gives the bus right to the CPU. An example in which DMA transfer is carried out in minimum cycles at the time when DMA transfer request signals due to external factors concurrently occur. Figure 1.16.6 An example of DMA transfer effected by external factors.
An example in which DMA transmission is carried out in minimum cycles at the time when DMA transmission request signals due to external factors concurrently occur.
BCLK DMA0 DMA1 CPU INT0 DMA0 request bit INT1 DMA1 request bit Obtainm ent of the bus right
Figure 1.16.6. An example of DMA transfer effected by external factors
81
Mitsubishi microcomputers
M16C / 62 Group
Timer Timer
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
There are eleven 16-bit timers. These timers can be classified by function into timers A (five) and timers B (six). All these timers function independently. Figures 1.17.1 and 1.17.2 show the block diagram of timers.
Clock prescaler XIN 1/8 1/4 f1 f8 f32 fC32 f1 f8 f32 XCIN Clock prescaler reset flag (bit 7 at address 038116) set to "1" 1/32 Reset fC32
* Timer mode * One-shot mode * PWM mode
Timer A0 interrupt TA0IN
Noise filter
Timer A0
* Event counter mode
* Timer mode * One-shot mode * PWM mode
Timer A1 interrupt Timer A1
TA1IN
Noise filter
* Event counter mode * Timer mode * One-shot mode * PWM mode
Timer A2 interrupt TA2IN
Noise filter
Timer A2
* Event counter mode
* Timer mode * One-shot mode * PWM mode
Timer A3 interrupt TA3IN
Noise filter
Timer A3
* Event counter mode * Timer mode * One-shot mode * PWM mode
Timer A4 interrupt TA4IN
Noise filter
Timer A4
* Event counter mode
Timer B2 overflow
Note 1: The TA0IN pin (P71) is shared with RxD2 and the TB5IN pin, so be careful.
Figure 1.17.1. Timer A block diagram
82
Mitsubishi microcomputers
M16C / 62 Group
Timer
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock prescaler XIN 1/8 1/4 f1 f8 f32 fC32 Timer A f1 f8 f32 XCIN Clock prescaler reset flag (bit 7 at address 038116) set to "1" 1/32 Reset fC32
* Timer mode * Pulse width measuring mode
TB0IN
Noise filter
Timer B0 interrupt Timer B0
* Event counter mode
* Timer mode * Pulse width measuring mode
TB1IN
Noise filter
Timer B1 interrupt
Timer B1
* Event counter mode
* Timer mode * Pulse width measuring mode
Timer B2 interrupt
TB2IN
Noise filter
Timer B2
* Event counter mode
* Timer mode * Pulse width measuring mode
Timer B3 interrupt
TB3IN
Noise filter
Timer B3
* Event counter mode
* Timer mode * Pulse width measuring mode
Timer B4 interrupt
TB4IN
Noise filter
Timer B4
* Event counter mode
* Timer mode * Pulse width measuring mode
Timer B5 interrupt
TB5IN
Noise filter
Timer B5
* Event counter mode
Note 1: The TB5IN pin (P71) is shared with RxD2 and the TA0IN pin, so be careful.
Figure 1.17.2. Timer B block diagram
83
Mitsubishi microcomputers
M16C / 62 Group
Timer A Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.17.3 shows the block diagram of timer A. Figures 1.17.4 to 1.17.6 show the timer A-related registers. Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register (i = 0 to 4) bits 0 and 1 to choose the desired mode. Timer A has the four operation modes listed as follows: * Timer mode: The timer counts an internal count source. * Event counter mode: The timer counts pulses from an external source or a timer over flow. * One-shot timer mode: The timer stops counting when the count reaches "000016". * Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.
Data bus high-order bits
Clock source selection
f1 f8 f32 fC32
Polarity selection
TAiIN (i = 0 to 4)
* Timer * One shot * PWM * Timer (gate function) * Event counter
Data bus low-order bits Low-order 8 bits Reload register (16) High-order 8 bits
Counter (16) Clock selection
Up count/down count Always down count except in event counter mode TAi Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Addresses 038716 038616 038916 038816 038B16 038A16 038D16 038C16 038F16 038E16 TAj Timer A4 Timer A0 Timer A1 Timer A2 Timer A3 TAk Timer A1 Timer A2 Timer A3 Timer A4 Timer A0
Count start flag
(Address 038016) Down count External trigger
TB2 overflow TAj overflow
(j = i - 1. Note, however, that j = 4 when i = 0)
Up/down flag
(Address 038416)
TAk overflow
(k = i + 1. Note, however, that k = 0 when i = 4)
TAiOUT
(i = 0 to 4)
Pulse output
Toggle flip-flop
Figure 1.17.3. Block diagram of timer A
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TAiMR(i=0 to 4)
Address When reset 039616 to 039A16 0016
Bit symbol
TMOD0
Bit name
Operation mode select bit
b1 b0
Function
0 0 : Timer mode 0 1 : Event counter mode 1 0 : One-shot timer mode 1 1 : Pulse width modulation (PWM) mode
RW
TMOD1
MR0 MR1 MR2 MR3 TCK0 TCK1
Function varies with each operation mode
Count source select bit (Function varies with each operation mode)
Figure 1.17.4. Timer A-related registers (1)
84
Mitsubishi microcomputers
M16C / 62 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Ai register (Note)
(b15) b7 (b8) b0 b7 b0
Symbol TA0 TA1 TA2 TA3 TA4
Address 038716,038616 038916,038816 038B16,038A16 038D16,038C16 038F16,038E16
When reset Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate
Function * Timer mode Counts an internal count source
Values that can be set
RW
000016 to FFFF16
* Event counter mode 000016 to FFFF16 Counts pulses from an external source or timer overflow * One-shot timer mode Counts a one shot width * Pulse width modulation mode (16-bit PWM) Functions as a 16-bit pulse width modulator * Pulse width modulation mode (8-bit PWM) Timer low-order address functions as an 8-bit prescaler and high-order address functions as an 8-bit pulse width modulator 000016 to FFFF16
000016 to FFFE16 0016 to FE16 (Both high-order and low-order addresses)
Note: Read and write data in 16-bit units.
Count start flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TABSR
Address 038016
When reset 0016
Bit symbol TA0S TA1S TA2S TA3S TA4S TB0S TB1S TB2S
Bit name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag Timer A4 count start flag Timer B0 count start flag Timer B1 count start flag Timer B2 count start flag
Function 0 : Stops counting 1 : Starts counting
RW
Up/down flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UDF
Address 038416
When reset 0016
Bit symbol TA0UD TA1UD TA2UD TA3UD TA4UD TA2P TA3P TA4P
Bit name Timer A0 up/down flag Timer A1 up/down flag Timer A2 up/down flag Timer A3 up/down flag Timer A4 up/down flag
Function 0 : Down count 1 : Up count This specification becomes valid when the up/down flag content is selected for up/down switching cause
RW
Timer A2 two-phase pulse 0 : two-phase pulse signal processing disabled signal processing select bit 1 : two-phase pulse signal processing enabled Timer A3 two-phase pulse signal processing select bit When not using the two-phase Timer A4 two-phase pulse pulse signal processing function, signal processing select bit set the select bit to "0"
Figure 1.17.5. Timer A-related registers (2)
85
Mitsubishi microcomputers
M16C / 62 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
One-shot start flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol ONSF
Address 038216
When reset 00X000002
Bit symbol
TA0OS TA1OS TA2OS TA3OS TA4OS
Bit name Timer A0 one-shot start flag Timer A1 one-shot start flag Timer A2 one-shot start flag Timer A3 one-shot start flag Timer A4 one-shot start flag
Function 1 : Timer start When read, the value is "0"
RW
Nothing is assigned. In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate. TA0TGL TA0TGH
Timer A0 event/trigger select bit
b7 b6
0 0 : Input on TA0IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA4 overflow is selected 1 1 : TA1 overflow is selected
Note: Set the corresponding port direction register to "0".
Trigger select register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TRGSR
Address 038316
When reset 0016
Bit symbol
TA1TGL
Bit name Timer A1 event/trigger select bit
Function
b1 b0
RW
TA1TGH TA2TGL
0 0 : Input on TA1IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA0 overflow is selected 1 1 : TA2 overflow is selected
b3 b2
Timer A2 event/trigger select bit
TA2TGH TA3TGL TA3TGH
0 0 : Input on TA2IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA1 overflow is selected 1 1 : TA3 overflow is selected
b5 b4
Timer A3 event/trigger select bit
0 0 : Input on TA3IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA2 overflow is selected 1 1 : TA4 overflow is selected
b7 b6
TA4TGL TA4TGH
Timer A4 event/trigger select bit
0 0 : Input on TA4IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA3 overflow is selected 1 1 : TA0 overflow is selected
Note: Set the corresponding port direction register to "0".
Clock prescaler reset flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol CPSRF
Address 038116
When reset 0XXXXXXX2
Bit symbol
Bit name
Function
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
CPSR
Clock prescaler reset flag
0 : No effect 1 : Prescaler is reset (When read, the value is "0")
Figure 1.17.6. Timer A-related registers (3)
86
Mitsubishi microcomputers
M16C / 62 Group
Timer A (1) Timer mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer counts an internally generated count source. (See Table 1.17.1.) Figure 1.17.7 shows the timer Ai mode register in timer mode. Table 1.17.1. Specifications of timer mode Item Count source Count operation Divide ratio Count start condition Count stop condition Interrupt request generation timing TAiIN pin function TAiOUT pin function Read from timer Write to timer Specification f1, f8, f32, fC32 * Down count * When the timer underflows, it reloads the reload register contents before continuing counting 1/(n+1) n : Set value Count start flag is set (= 1) Count start flag is reset (= 0) When the timer underflows Programmable I/O port or gate input Programmable I/O port or pulse output Count value can be read out by reading timer Ai register * When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter * When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time) * Gate function Counting can be started and stopped by the TAiIN pin's input signal * Pulse output function Each time the timer underflows, the TAiOUT pin's polarity is reversed
Select function
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
00
Symbol TAiMR(i=0 to 4) Bit symbol TMOD0 TMOD1 MR0
Address When reset 039616 to 039A16 0016 Bit name Function
b1 b0
RW
Operation mode select bit Pulse output function select bit
0 0 : Timer mode 0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (Note 1) (TAiOUT pin is a pulse output pin)
b4 b3
MR1
Gate function select bit
0 X (Note 2): Gate function not available
(TAiIN pin is a normal port pin)
MR2
1 0 : Timer counts only when TAiIN pin is held "L" (Note 3) 1 1 : Timer counts only when TAiIN pin is held "H" (Note 3) 0 (Must always be fixed to "0" in timer mode) Count source select bit
b7 b6
MR3 TCK0 TCK1
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Note 1: The settings of the corresponding port register and port direction register are invalid. Note 2: The bit can be "0" or "1". Note 3: Set the corresponding port direction register to "0".
Figure 1.17.7. Timer Ai mode register in timer mode
87
Mitsubishi microcomputers
M16C / 62 Group
Timer A (2) Event counter mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase external signal. Table 1.17.2 lists timer specifications when counting a single-phase external signal. Figure 1.17.8 shows the timer Ai mode register in event counter mode. Table 1.17.3 lists timer specifications when counting a two-phase external signal. Figure 1.17.9 shows the timer Ai mode register in event counter mode. Table 1.17.2. Timer specifications in event counter mode (when not processing two-phase pulse signal) Item Specification Count source * External signals input to TAiIN pin (effective edge can be selected by software) * TB2 overflow, TAj overflow Count operation * Up count or down count can be selected by external signal or software * When the timer overflows or underflows, it reloads the reload register con tents before continuing counting (Note) Divide ratio 1/ (FFFF16 - n + 1) for up count 1/ (n + 1) for down count n : Set value Count start condition Count start flag is set (= 1) Count stop condition Count start flag is reset (= 0) Interrupt request generation timing The timer overflows or underflows TAiIN pin function Programmable I/O port or count source input TAiOUT pin function Programmable I/O port, pulse output, or up/down count select input Read from timer Count value can be read out by reading timer Ai register Write to timer * When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter * When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time) Select function * Free-run count function Even when the timer overflows or underflows, the reload register content is not reloaded to it * Pulse output function Each time the timer overflows or underflows, the TAiOUT pin's polarity is reversed Note: This does not apply when the free-run function is selected.
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
01
Symbol TAiMR(i = 0, 1) Bit symbol TMOD0 TMOD1 MR0
Address 039616, 039716
When reset 0016 Function RW
Bit name Operation mode select bit Pulse output function select bit
b1 b0
0 1 : Event counter mode (Note 1) 0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (Note 2) (TAiOUT pin is a pulse output pin) 0 : Counts external signal's falling edge 1 : Counts external signal's rising edge 0 : Up/down flag's content 1 : TAiOUT pin's input signal (Note 4)
MR1 MR2 MR3 TCK0 TCK1
Count polarity select bit (Note 3) Up/down switching cause select bit
0 (Must always be fixed to "0" in event counter mode) Count operation type select bit 0 : Reload type 1 : Free-run type
Invalid in event counter mode Can be "0" or "1"
Note 1: In event counter mode, the count source is selected by the event / trigger select bit (addresses 038216 and 038316). Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Valid only when counting an external signal. Note 4: When an "L" signal is input to the TAiOUT pin, the downcount is activated. When "H", the upcount is activated. Set the corresponding port direction register to "0".
Figure 1.17.8. Timer Ai mode register in event counter mode
88
Mitsubishi microcomputers
M16C / 62 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.17.3. Timer specifications in event counter mode (when processing two-phase pulse signal with timers A2, A3, and A4) Item Count source Count operation Specification * Two-phase pulse signals input to TAiIN or TAiOUT pin * Up count or down count can be selected by two-phase pulse signal * When the timer overflows or underflows, the reload register content is reloaded and the timer starts over again (Note) 1/ (FFFF16 - n + 1) for up count 1/ (n + 1) for down count n : Set value Count start flag is set (= 1) Count start flag is reset (= 0) Timer overflows or underflows Two-phase pulse input Two-phase pulse input Count value can be read out by reading timer A2, A3, or A4 register * When counting stopped When a value is written to timer A2, A3, or A4 register, it is written to both reload register and counter * When counting in progress When a value is written to timer A2, A3, or A4 register, it is written to only reload register. (Transferred to counter at next reload time.) * Normal processing operation The timer counts up rising edges or counts down falling edges on the TAiIN pin when input signal on the TAiOUT pin is "H"
Divide ratio Count start condition Count stop condition
Interrupt request generation timing
TAiIN pin function TAiOUT pin function Read from timer Write to timer
Select function
TAiOUT TAiIN (i=2,3)
Up count
Up count
Up Down count count
Down count
Down count
* Multiply-by-4 processing operation If the phase relationship is such that the TAiIN pin goes "H" when the input signal on the TAiOUT pin is "H", the timer counts up rising and falling edges on the TAiOUT and TAiIN pins. If the phase relationship is such that the TAiIN pin goes "L" when the input signal on the TAiOUT pin is "H", the timer counts down rising and falling edges on the TAiOUT and TAiIN pins.
TAiOUT
Count up all edges Count down all edges
TAiIN (i=3,4)
Count up all edges
Note: This does not apply when the free-run function is selected.
Count down all edges
89
Mitsubishi microcomputers
M16C / 62 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Ai mode register (When not using two-phase pulse signal processing)
b7 b6 b5 b4 b3 b2 b1 b0
0
01
Symbol Address When reset TAiMR(i = 2 to 4) 039816 to 039A16 0016
Bit symbol
TMOD0 TMOD1 MR0
Bit name
Operation mode select bit Pulse output function select bit
b1 b0
Function
0 1 : Event counter mode 0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (Note 1) (TAiOUT pin is a pulse output pin) 0 : Counts external signal's falling edges 1 : Counts external signal's rising edges 0 : Up/down flag's content 1 : TAiOUT pin's input signal (Note 3)
RW
MR1 MR2 MR3 TCK0 TCK1
Count polarity select bit (Note 2) Up/down switching cause select bit
0 : (Must always be "0" in event counter mode) Count operation type select bit Two-phase pulse signal processing operation select bit (Note 4)(Note 5) 0 : Reload type 1 : Free-run type 0 : Normal processing operation 1 : Multiply-by-4 processing operation
Note 1: The settings of the corresponding port register and port direction register are invalid. Note 2: This bit is valid when only counting an external signal. Note 3: Set the corresponding port direction register to "0". Note 4: This bit is valid for the timer A3 mode register. For timer A2 and A4 mode registers, this bit can be "0 "or "1". Note 5: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 038416) is set to "1". Also, always be sure to set the event/trigger select bit (addresses 038216 and 038316) to "00".
Timer Ai mode register (When using two-phase pulse signal processing)
b7 b6 b5 b4 b3 b2 b1 b0
010001
Symbol Address When reset TAiMR(i = 2 to 4) 039816 to 039A16 0016
Bit symbol
TMOD0 TMOD1 MR0 MR1 MR2 MR3 TCK0 TCK1
Bit name
Operation mode select bit
b1 b0
Function
0 1 : Event counter mode
RW
0 (Must always be "0" when using two-phase pulse signal processing) 0 (Must always be "0" when using two-phase pulse signal processing) 1 (Must always be "1" when using two-phase pulse signal processing) 0 (Must always be "0" when using two-phase pulse signal processing) Count operation type select bit Two-phase pulse processing operation select bit (Note 1)(Note 2) 0 : Reload type 1 : Free-run type 0 : Normal processing operation 1 : Multiply-by-4 processing operation
Note 1: This bit is valid for timer A3 mode register. For timer A2 and A4 mode registers, this bit can be "0" or "1". Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 038416) is set to "1". Also, always be sure to set the event/trigger select bit (addresses 038216 and 038316) to "00".
Figure 1.17.9. Timer Ai mode register in event counter mode
90
Mitsubishi microcomputers
M16C / 62 Group
Timer A (3) One-shot timer mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer operates only once. (See Table 1.17.4.) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 1.17.10 shows the timer Ai mode register in one-shot timer mode. Table 1.17.4. Timer specifications in one-shot timer mode Item Count source Count operation Specification f1, f8, f32, fC32 * The timer counts down * When the count reaches 000016, the timer stops counting after reloading a new count * If a trigger occurs when counting, the timer reloads a new count and restarts counting 1/n n : Set value * An external trigger is input * The timer overflows * The one-shot start flag is set (= 1) * A new count is reloaded after the count has reached 000016 * The count start flag is reset (= 0) The count reaches 000016 Programmable I/O port or trigger input Programmable I/O port or pulse output When timer Ai register is read, it indicates an indeterminate value * When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter * When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time)
Divide ratio Count start condition
Count stop condition
Interrupt request generation timing
TAiIN pin function TAiOUT pin function Read from timer Write to timer
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
10
Symbol Address When reset TAiMR(i = 0 to 4) 039616 to 039A16 0016 Bit symbol TMOD0 TMOD1 MR0 Pulse output function select bit Bit name Operation mode select bit
b1 b0
Function 1 0 : One-shot timer mode 0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (Note 1) (TAiOUT pin is a pulse output pin)
0 : Falling edge of TAiIN pin's input signal (Note 3) 1 : Rising edge of TAiIN pin's input signal (Note 3)
RW
MR1 MR2
External trigger select bit (Note 2) Trigger select bit
0 : One-shot start flag is valid 1 : Selected by event/trigger select register
MR3 TCK0 TCK1
0 (Must always be "0" in one-shot timer mode) Count source select bit
b7 b6
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Note 1: The settings of the corresponding port register and port direction register are invalid. Note 2: Valid only when the TAiIN pin is selected by the event/trigger select bit (addresses 038216 and 038316). If timer overflow is selected, this bit can be "1" or "0". Note 3: Set the corresponding port direction register to "0".
Figure 1.17.10. Timer Ai mode register in one-shot timer mode
91
Mitsubishi microcomputers
M16C / 62 Group
Timer A (4) Pulse width modulation (PWM) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer outputs pulses of a given width in succession. (See Table 1.17.5.) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.17.11 shows the timer Ai mode register in pulse width modulation mode. Figure 1.17.12 shows the example of how a 16-bit pulse width modulator operates. Figure 1.17.13 shows the example of how an 8bit pulse width modulator operates. Table 1.17.5. Timer specifications in pulse width modulation mode
Item
Count source Count operation
Specification
f1, f8, f32, fC32 * The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator) * The timer reloads a new count at a rising edge of PWM pulse and continues counting * The timer is not affected by a trigger that occurs when counting * High level width n / fi n : Set value * Cycle time (216-1) / fi fixed * High level width n (m+1) / fi n : values set to timer Ai register's high-order address * Cycle time (28-1) (m+1) / fi m : values set to timer Ai register's low-order address * External trigger is input * The timer overflows * The count start flag is set (= 1) * The count start flag is reset (= 0) PWM pulse goes "L" Programmable I/O port or trigger input Pulse output When timer Ai register is read, it indicates an indeterminate value * When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter * When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time)
16-bit PWM 8-bit PWM Count start condition
Count stop condition Interrupt request generation timing TAiIN pin function TAiOUT pin function Read from timer Write to timer
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
11
1
Symbol TAiMR(i=0 to 4) Bit symbol TMOD0 TMOD1 MR0 MR1 MR2
Address When reset 039616 to 039A16 0016 Function
b1 b0
Bit name Operation mode select bit 1 1 : PWM mode
RW
1 (Must always be "1" in PWM mode) External trigger select bit (Note 1) Trigger select bit
0: Falling edge of TAiIN pin's input signal (Note 2) 1: Rising edge of TAiIN pin's input signal (Note 2)
0: Count start flag is valid 1: Selected by event/trigger select register
0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator
b7 b6
MR3
16/8-bit PWM mode select bit Count source select bit
TCK0 TCK1
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Note 1: Valid only when the TAiIN pin is selected by the event/trigger select bit (addresses 038216 and 038316). If timer overflow is selected, this bit can be "1" or "0". Note 2: Set the corresponding port direction register to "0".
Figure 1.17.11. Timer Ai mode register in pulse width modulation mode
92
Mitsubishi microcomputers
M16C / 62 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Condition : Reload register = 000316, when external trigger (rising edge of TAiIN pin input signal) is selected
1 / fi X (2 16 - 1)
Count source
TAiIN pin input signal
"H" "L"
Trigger is not generated by this signal 1 / fi X n
PWM pulse output from TAiOUT pin Timer Ai interrupt request bit
"H" "L" "1" "0"
fi : Frequency of count source (f1, f8, f32, fC32) Cleared to "0" when interrupt request is accepted, or cleared by software Note: n = 000016 to FFFE16.
Figure 1.17.12. Example of how a 16-bit pulse width modulator operates
Condition : Reload register high-order 8 bits = 0216 Reload register low-order 8 bits = 0216 External trigger (falling edge of TAiIN pin input signal) is selected
1 / fi X (m + 1) X (2 8 - 1) Count source (Note1)
TAiIN pin input signal
"H" "L"
1 / fi X (m + 1)
"H" Underflow signal of 8-bit prescaler (Note2) "L"
1 / fi X (m + 1) X n PWM pulse output from TAiOUT pin Timer Ai interrupt request bit
"H" "L" "1" "0"
fi : Frequency of count source (f1, f8, f32, fC32)
Cleared to "0" when interrupt request is accepted, or cleaerd by software
Note 1: The 8-bit prescaler counts the count source. Note 2: The 8-bit pulse width modulator counts the 8-bit prescaler's underflow signal. Note 3: m = 0016 to FE16; n = 0016 to FE16.
Figure 1.17.13. Example of how an 8-bit pulse width modulator operates
93
Mitsubishi microcomputers
M16C / 62 Group
Timer B Timer B
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.17.14 shows the block diagram of timer B. Figures 1.17.15 and 1.17.16 show the timer B-related registers. Use the timer Bi mode register (i = 0 to 5) bits 0 and 1 to choose the desired mode. Timer B has three operation modes listed as follows: * Timer mode: The timer counts an internal count source. * Event counter mode: The timer counts pulses from an external source or a timer overflow. * Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.
Data bus high-order bits Data bus low-order bits Low-order 8 bits High-order 8 bits
Clock source selection
f1 f8 f32 fC32
TBiIN (i = 0 to 5)
* Timer * Pulse period/pulse width measurement
Reload register (16)
* Event counter Polarity switching and edge pulse Count start flag (address 038016) Counter reset circuit Can be selected in only event counter mode TBj overflow (j = i - 1. Note, however, j = 2 when i = 0, j = 5 when i = 3) TBi Timer B0 Timer B1 Timer B2 Timer B3 Timer B4 Timer B5
Counter (16)
Address 039116 039016 039316 039216 039516 039416 035116 035016 035316 035216 035516 035416
TBj Timer B2 Timer B0 Timer B1 Timer B5 Timer B3 Timer B4
Figure 1.17.14. Block diagram of timer B
Timer Bi mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol Address TBiMR(i = 0 to 5) 039B16 to 039D16 035B16 to 035D16
When reset 00XX00002 00XX00002
Bit symbol
TMOD0 TMOD1
Bit name
Operation mode select bit
b1 b0
Function
0 0 : Timer mode 0 1 : Event counter mode 1 0 : Pulse period/pulse width measurement mode 1 1 : Inhibited
R
W
MR0 MR1 MR2
Function varies with each operation mode
(Note 1) (Note 2)
MR3 TCK0 TCK1 Count source select bit (Function varies with each operation mode)
Note 1: Timer B0, timer B3. Note 2: Timer B1, timer B2, timer B4, timer B5.
Figure 1.17.15. Timer B-related registers (1)
94
Mitsubishi microcomputers
M16C / 62 Group Timer B
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Bi register (Note)
(b15) b7 (b8) b0 b7 b0
Symbol TB0 TB1 TB2 TB3 TB4 TB5
Address 039116, 039016 039316, 039216 039516, 039416 035116, 035016 035316, 035216 035516, 035416
When reset Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate
Values that can be set
Function
* Timer mode Counts the timer's period * Event counter mode Counts external pulses input or a timer overflow * Pulse period / pulse width measurement mode Measures a pulse period or width
RW
000016 to FFFF16
000016 to FFFF16
Note: Read and write data in 16-bit units.
Count start flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TABSR
Address 038016
When reset 0016
Bit symbol TA0S TA1S TA2S TA3S TA4S TB0S TB1S TB2S
Bit name
Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag Timer A4 count start flag Timer B0 count start flag Timer B1 count start flag Timer B2 count start flag
Function
0 : Stops counting 1 : Starts counting
RW
Timer B3, 4, 5 count start flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TBSR
Address 034016
When reset 000XXXXX2
Bit symbol Nothing is assigned.
Bit name
Function
RW
In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
TB3S TB4S TB5S Timer B3 count start flag Timer B4 count start flag Timer B5 count start flag 0 : Stops counting 1 : Starts counting
Clock prescaler reset flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol CPSRF
Address 038116
When reset 0XXXXXXX2
Bit symbol Nothing is assigned.
Bit name
Function
RW
In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminate.
CPSR Clock prescaler reset flag 0 : No effect 1 : Prescaler is reset (When read, the value is "0")
Figure 1.17.16. Timer B-related registers (2)
95
Mitsubishi microcomputers
M16C / 62 Group
Timer B (1) Timer mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer counts an internally generated count source. (See Table 1.17.6.) Figure 1.17.17 shows the timer Bi mode register in timer mode. Table 1.17.6. Timer specifications in timer mode Item Count source Count operation Specification f1, f8, f32, fC32 * Counts down * When the timer underflows, it reloads the reload register contents before continuing counting 1/(n+1) n : Set value Count start flag is set (= 1) Count start flag is reset (= 0) The timer underflows Programmable I/O port Count value is read out by reading timer Bi register * When counting stopped When a value is written to timer Bi register, it is written to both reload register and counter * When counting in progress When a value is written to timer Bi register, it is written to only reload register (Transferred to counter at next reload time)
Divide ratio Count start condition Count stop condition Interrupt request generation timing TBiIN pin function Read from timer Write to timer
Timer Bi mode register
b7 b6 b5 b4 b3 b2 b1 b0
00
Symbol TBiMR(i=0 to 5)
Address 039B16 to 039D16 035B16 to 035D16
When reset 00XX00002 00XX00002
Bit symbol TMOD0 TMOD1 MR0 MR1 MR2
Bit name
Operation mode select bit
b1 b0
Function
0 0 : Timer mode
R
W
Invalid in timer mode Can be "0" or "1" 0 (Fixed to "0" in timer mode ; i = 0, 3)
Nothing is assiigned (i = 1, 2, 4, 5). In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate.
(Note 1) (Note 2)
MR3
Invalid in timer mode. In an attempt to write to this bit, write "0". The value, if read in timer mode, turns out to be indeterminate. Count source select bit
b7 b6
TCK0 TCK1
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Note 1: Timer B0, timer B3. Note 2: Timer B1, timer B2, timer B4, timer B5.
Figure 1.17.17. Timer Bi mode register in timer mode
96
Mitsubishi microcomputers
M16C / 62 Group Timer B (2) Event counter mode
In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.17.7.) Figure 1.17.18 shows the timer Bi mode register in event counter mode. Table 1.17.7. Timer specifications in event counter mode Item Count source Specification * External signals input to TBiIN pin * Effective edge of count source can be a rising edge, a falling edge, or falling and rising edges as selected by software Count operation * Counts down * When the timer underflows, it reloads the reload register contents before continuing counting Divide ratio 1/(n+1) n : Set value Count start condition Count start flag is set (= 1) Count stop condition Count start flag is reset (= 0) Interrupt request generation timing The timer underflows TBiIN pin function Read from timer Write to timer Count source input Count value can be read out by reading timer Bi register * When counting stopped When a value is written to timer Bi register, it is written to both reload register and counter * When counting in progress When a value is written to timer Bi register, it is written to only reload register (Transferred to counter at next reload time)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Bi mode register
b7 b6 b5 b4 b3 b2 b1 b0
01
Symbol TBiMR(i=0 to 5)
Address 039B16 to 039D16 035B16 to 035D16
When reset 00XX00002 00XX00002
Bit symbol
TMOD0 TMOD1 MR0
Bit name
Operation mode select bit
b1 b0
Function
0 1 : Event counter mode
b3 b2
R
W
Count polarity select bit (Note 1)
MR1
0 0 : Counts external signal's falling edges 0 1 : Counts external signal's rising edges 1 0 : Counts external signal's falling and rising edges 1 1 : Inhibited
(Note 2)
MR2
0 (Fixed to "0" in event counter mode; i = 0, 3) Nothing is assigned (i = 1, 2, 4, 5). In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate. Invalid in event counter mode. In an attempt to write to this bit, write "0". The value, if read in event counter mode, turns out to be indeterminate. Invalid in event counter mode. Can be "0" or "1". Event clock select 0 : Input from TBiIN pin (Note 4) 1 : TBj overflow
(j = i - 1; however, j = 2 when i = 0, j = 5 when i = 3)
(Note 3)
MR3
TCK0 TCK1
Note 1: Valid only when input from the TBiIN pin is selected as the event clock. If timer's overflow is selected, this bit can be "0" or "1". Note 2: Timer B0, timer B3. Note 3: Timer B1, timer B2, timer B4, timer B5. Note 4: Set the corresponding port direction register to "0".
Figure 1.17.18. Timer Bi mode register in event counter mode
97
Mitsubishi microcomputers
M16C / 62 Group
Timer B (3) Pulse period/pulse width measurement mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.17.8.) Figure 1.17.19 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 1.17.20 shows the operation timing when measuring a pulse period. Figure 1.17.21 shows the operation timing when measuring a pulse width. Table 1.17.8. Timer specifications in pulse period/pulse width measurement mode Item Count source Count operation Specification f1, f8, f32, fC32 * Up count * Counter value "000016" is transferred to reload register at measurement pulse's effective edge and the timer continues counting Count start condition Count start flag is set (= 1) Count stop condition Count start flag is reset (= 0) Interrupt request generation timing * When measurement pulse's effective edge is input (Note 1) * When an overflow occurs. (Simultaneously, the timer Bi overflow flag changes to "1". The timer Bi overflow flag changes to "0" when the count start flag is "1" and a value is written to the timer Bi mode register.) TBiIN pin function Measurement pulse input Read from timer When timer Bi register is read, it indicates the reload register's content (measurement result) (Note 2) Write to timer Cannot be written to Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting. Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.
Timer Bi mode register
b7 b6 b5 b4 b3 b2 b1 b0
10
Symbol TBiMR(i=0 to 5)
Address 039B16 to 039D16 035B16 to 035D16
When reset 00XX00002 00XX00002
Bit symbol
TMOD0 TMOD1 MR0
Bit name
Operation mode select bit Measurement mode select bit
b1 b0
Function
1 0 : Pulse period / pulse width measurement mode
b3 b2
R
W
MR1
0 0 : Pulse period measurement (Interval between measurement pulse's falling edge to falling edge) 0 1 : Pulse period measurement (Interval between measurement pulse's rising edge to rising edge) 1 0 : Pulse width measurement (Interval between measurement pulse's falling edge to rising edge, and between rising edge to falling edge) 1 1 : Inhibited
(Note 2)
MR2
0 (Fixed to "0" in pulse period/pulse width measurement mode; i = 0, 3) Nothing is assigned (i = 1, 2, 4, 5). In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate.
(Note 3)
MR3 TCK0 TCK1
Timer Bi overflow flag ( Note 1) Count source select bit
0 : Timer did not overflow 1 : Timer has overflowed
b7 b6
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Note 1: The timer Bi overflow flag changes to "0" when the count start flag is "1" and a value is written to the timer Bi mode register. This flag cannot be set to "1" by software. Note 2: Timer B0, timer B3. Note 3: Timer B1, timer B2, timer B4, timer B5.
Figure 1.17.19. Timer Bi mode register in pulse period/pulse width measurement mode
98
Mitsubishi microcomputers
M16C / 62 Group Timer B
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
When measuring measurement pulse time interval from falling edge to falling edge
Count source
Measurement pulse
"H" "L" Transfer (indeterminate value) Transfer (measured value)
Reload register transfer timing
counter (Note 1) (Note 1) (Note 2)
Timing at which counter reaches "000016" Count start flag
"1" "0"
Timer Bi interrupt request bit
"1" "0"
Cleared to "0" when interrupt request is accepted, or cleared by software. Timer Bi overflow flag
"1" "0"
Note 1: Counter is initialized at completion of measurement. Note 2: Timer has overflowed.
Figure 1.17.20. Operation timing when measuring a pulse period
Count source
Measurement pulse
"H" "L"
Transfer (indeterminate value) Transfer (measured value) Transfer (measured value) Transfer (measured value)
Reload register transfer timing
counter
(Note 1)
(Note 1)
(Note 1)
(Note 1)
(Note 2)
Timing at which counter reaches "000016"
"1" "0"
Count start flag
Timer Bi interrupt request bit
"1" "0"
Cleared to "0" when interrupt request is accepted, or cleared by software. Timer Bi overflow flag
"1" "0"
Note 1: Counter is initialized at completion of measurement. Note 2: Timer has overflowed.
Figure 1.17.21. Operation timing when measuring a pulse width
99
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timers' functions for three-phase motor control
Use of more than one built-in timer A and timer B provides the means of outputting three-phase motor driving waveforms. Figures 1.18.1 to 1.18.3 show registers related to timers for three-phase motor control.
Three-phase PWM control register 0
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
INVC0
Address
034816
When reset
0016 R W
Bit symbol
INV00
Bit name
Description
Effective interrupt output 0: A timer B2 interrupt occurs when the timer A1 reload control signal is "1". polarity select bit 1: A timer B2 interrupt occurs when the timer (Note4) A1 reload control signal is "0". Effective only in three-phase mode 1 Effective interrupt output 0: Not specified. 1: Selected by the effective interrupt output specification bit polarity selection bit. (Note4) Effective only in three-phase mode 1 Mode select bit (Note 2) Output control bit Positive and negative phases concurrent L output disable function enable bit Positive and negative phases concurrent L output detect flag 0: Normal mode 1: Three-phase PWM output mode 0: Output disabled 1: Output enabled 0: Feature disabled 1: Feature enabled
INV01
INV02 INV03
INV04
INV05 INV06 INV07
0: Not detected yet 1: Already detected
(Note 1)
Modulation mode select 0: Triangular wave modulation mode 1: Sawtooth wave modulation mode bit (Note 3) Software trigger bit 1: Trigger generated The value, when read, is "0".
Note 1: No value other than "0" can be written. Note 2: Selecting three-phase PWM output mode causes P80, P81, and P72 through P75 to output U, U, V, V, W, and W, and works the timer for setting short circuit prevention time, the U, V, W phase output control circuits, and the circuit for setting timer B2 interrupt frequency. Note 3: In triangular wave modulation mode: The short circuit prevention timer starts in synchronization with the falling edge of timer Ai output. The data transfer from the three-phase buffer register to the three-phase output shift register is made only once in synchronization with the transfer trigger signal after writing to the three-phase output buffer register. In sawtooth wave modulation mode: The short circuit prevention timer starts in synchronization with the falling edge of timer A output and with the transfer trigger signal. The data transfer from the three-phase output buffer register to the three-phase output shift register is made with respect to every transfer trigger. Note 4: To write "1" both to bit 0 (INV00) and bit 1 (INV01) of the three-phase PWM control register, set in advance the content of the timer B2 interrupt occurrences frequency set counter.
Three-phase 0
PWM control register 1
Symbol
INVC1
b7 b6 b5 b4 b3 b2 b1 b0
Address
034916
When reset
0016 R W
Bit symbol
INV10
Bit name
Timer Ai start trigger signal select bit Timer A1-1, A2-1, A4-1 control bit Short circuit timer count source select bit
Description
0: Timer B2 overflow signal 1: Timer B2 overflow signal, signal for writing to timer B2 0: Three-phase mode 0 1: Three-phase mode 1 0 : Not to be used 1 : f1/2 (Note)
INV11 INV12
Noting is assigned. In an attempt to write to this bit, write "0". The value, if read, turns out to be "0". Reserved bit Always set to "0"
Noting is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0". Note : To use three-phase PWM output mode, write "1" to INV12.
Figure 1.18.1. Registers related to timers for three-phase motor control
100
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Three-phase output buffer register 0 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol IDB0
Bit Symbol
Address 034A16
When reset 0016
Bit name
U phase output buffer 0 U phase output buffer 0 V phase output buffer 0 V phase output buffer 0 W phase output buffer 0 W phase output buffer 0
Function
Setting in U phase output buffer 0 Setting in U phase output buffer 0 Setting in V phase output buffer 0 Setting in V phase output buffer 0 Setting in W phase output buffer 0 Setting in W phase output buffer 0
RW
DU0 DUB0 DV0 DVB0 DW0 DWB0
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Note: When executing read instruction of this register, the contents of three-phase shift register is read out.
Three-phase output buffer register 1 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol IDB1
Bit Symbol
Address 034B16
When reset 0016
Bit name
U phase output buffer 1 U phase output buffer 1 V phase output buffer 1 V phase output buffer 1 W phase output buffer 1 W phase output buffer 1
Function
Setting in U phase output buffer 1 Setting in U phase output buffer 1 Setting in V phase output buffer 1 Setting in V phase output buffer 1 Setting in W phase output buffer 1 Setting in W phase output buffer 1
RW
DU1 DUB1 DV1 DVB1 DW1 DWB1
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Note: When executing read instruction of this register, the contents of three-phase shift register is read out.
Dead time timer
b7 b0
Symbol DTT
Address 034C16
When reset Indeterminate
Function
Set dead time timer
Values that can be set
1 to 255
RW
Timer B2 interrupt occurrences frequency set counter
b3 b0
Symbol ICTB2
Address 034D16
When reset Indeterminate
Function
Set occurrence frequency of timer B2 interrupt request
Values that can be set
1 to 15
R
W
Note1: In setting 1 to bit 1 (INV01) - the effective interrupt output specification bit - of threephase PWM control register 0, do not change the B2 interrupt occurrences frequency set counter to deal with the timer function for three-phase motor control. Note2: Do not write at the timing of an overflow occurrence in timer B2.
Figure 1.18.2. Registers related to timers for three-phase motor control
101
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Ai register (Note)
(b15) b7 (b8) b0 b7 b0
Symbol TA1 TA2 TA4 TB2 Function
Address 038916,038816 038B16,038A16 038F16,038E16 039516,039416
When reset Indeterminate Indeterminate Indeterminate Indeterminate
Values that can be set
RW
* Timer mode Counts an internal count source * One-shot timer mode Counts a one shot width
000016 to FFFF16 000016 to FFFF16
Note: Read and write data in 16-bit units.
Timer Ai-1 register (Note)
(b15) b7 (b8) b0 b7 b0
Symbol TA11 TA21 TA41 Function
Address 034316,034216 034516,034416 034716,034616
When reset Indeterminate Indeterminate Indeterminate
Values that can be set
RW
Counts an internal count source
000016 to FFFF16
Note: Read and write data in 16-bit units.
Trigger select register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TRGSR Bit symbol
TA1TGL
Address 038316 Bit name Timer A1 event/trigger select bit
When reset 0016 Function
b1 b0
RW
TA1TGH TA2TGL
0 0 : Input on TA1IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA0 overflow is selected 1 1 : TA2 overflow is selected
b3 b2
Timer A2 event/trigger select bit
TA2TGH TA3TGL
0 0 : Input on TA2IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA1 overflow is selected 1 1 : TA3 overflow is selected
b5 b4
Timer A3 event/trigger select bit
TA3TGH
0 0 : Input on TA3IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA2 overflow is selected 1 1 : TA4 overflow is selected
b7 b6
TA4TGL
Timer A4 event/trigger select bit
TA4TGH
0 0 : Input on TA4IN is selected (Note) 0 1 : TB2 overflow is selected 1 0 : TA3 overflow is selected 1 1 : TA0 overflow is selected
Note: Set the corresponding port direction register to "0".
Count start flag
b7 b6 b5 b4 b3 b2 b1 b0
Symbol TABSR Bit symbol TA0S TA1S TA2S TA3S TA4S TB0S TB1S TB2S
Address 038016 Bit name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag Timer A4 count start flag Timer B0 count start flag Timer B1 count start flag Timer B2 count start flag
When reset 0016 Function 0 : Stops counting 1 : Starts counting RW
Figure 1.18.3. Registers related to timers for three-phase motor control
102
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Three-phase motor driving waveform output mode (three-phase waveform mode)
Setting "1" in the mode select bit (bit 2 at 034816) shown in Figure 1.18.1 - causes three-phase waveform mode that uses four timers A1, A2, A4, and B2 to be selected. As shown in Figure 1.18.4, set timers A1, A2, and A4 in one-shot timer mode, set the trigger in timer B2, and set timer B2 in timer mode using the respective timer mode registers.
Timer Ai mode register
b7 b6 b5 b4 b3 b2 b1 b0
01
10
Symbol TA1MR TA2MR TA3MR
Address 039716 039816 039A16 Bit name Operation mode select bit Pulse output function select bit External trigger select bit Trigger select bit
When reset 0016 0016 0016 Function
b1 b0
Bit symbol TMOD0 TMOD1 MR0
RW
1 0 : One-shot timer mode 0 (Must always be "0" in three-phase PWM output mode) Invalid in three-phase PWM output mode 1 : Selected by event/trigger select register
MR1 MR2 MR3 TCK0 TCK1
0 (Must always be "0" in one-shot timer mode) Count source select bit
b7 b6
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Timer B2 mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
00
Symbol TB2MR Bit symbol TMOD0 TMOD1 MR0 MR1 MR2 MR3
Address 039D16
When reset 00XX00002 RW
Bit name
Operation mode select bit
b1 b0
Function
0 0 : Timer mode
Invalid in timer mode Can be "0" or "1" 0 (Fixed to "0" in timer mode ; i = 0) Invalid in timer mode. This bit can neither be set nor reset. When read in timer mode, its content is indeterminate. Count source select bit
b7 b6
TCK0 TCK1
0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32
Figure 1.18.4. Timer mode registers in three-phase waveform mode
103
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.18.5 shows the block diagram for three-phase waveform mode. In three-phase waveform mode, ___ ___ the positive-phase waveforms (U phase, V phase, and W phase) and negative waveforms (U phase, V ___ phase, and W phase), six waveforms in total, are output from P80, P81, P72, P73, P74, and P75 as active ___ on the "L" level. Of the timers used in this mode, timer A4 controls the U phase and U phase, timer A1 ___ ___ controls the V phase and V phase, and timer A2 controls the W phase and W phase respectively; timer B2 controls the periods of one-shot pulse output from timers A4, A1, and A2. In outputting a waveform, dead time can be set so as to cause the "L" level of the positive waveform ___ output (U phase, V phase, and W phase) not to lap over the "L" level of the negative waveform output (U ___ ___ phase, V phase, and W phase). To set short circuit time, use three 8-bit timers sharing the reload register for setting dead time. A value from 1 through 255 can be set as the count of the timer for setting dead time. The timer for setting dead time works as a one-shot timer. If a value is written to the dead timer (034C16), the value is written to the reload register shared by the three timers for setting dead time. Any of the timers for setting dead time takes the value of the reload register into its counter, if a start trigger comes from its corresponding timer, and performs a down count in line with the clock source selected by the dead time timer count source select bit (bit 2 at 034916). The timer can receive another trigger again before the workings due to the previous trigger are completed. In this instance, the timer performs a down count from the reload register's content after its transfer, provoked by the trigger, to the timer for setting dead time. Since the timer for setting dead time works as a one-shot timer, it starts outputting pulses if a trigger comes; it stops outputting pulses as soon as its content becomes 0016, and waits for the next trigger to come. ___ ___ The positive waveforms (U phase, V phase, and W phase) and the negative waveforms (U phase, V ___ phase, and W phase) in three-phase waveform mode are output from respective ports by means of setting "1" in the output control bit (bit 3 at 034816). Setting "0" in this bit causes the ports to be the state of set by port direction register. This bit can be set to "0" not only by use of the applicable instruction, but _______ by entering a falling edge in the NMI terminal or by resetting. Also, if "1" is set in the positive and negative phases concurrent L output disable function enable bit (bit 4 at 034816) causes one of the pairs of U ___ ___ ___ phase and U phase, V phase and V phase, and W phase and W phase concurrently go to "L", as a result, the port become the state of set by port direction register.
104
INV00 1 Interrupt request bit INV05 0 f1 1/2 Trigger Trigger Dead time timer setting n = 1 to 255 Bit 0 at 034B16 Bit 0 at 034A16 DQ T INV06 U phase output control circuit DU0 U phase output signal 1 n = 1 to 255 INV04 INV12 (Note) Reload register RESET NMI Interrupt occurrence frequency set counter n = 1 to 15 R
INV01 INV11 INV03 D Q
Circuit foriInterrupt occurrence frequency set counter
Overflow
Signal to be written to B2 INV10
INV07
Timer B2
(Timer mode)
U(P80)
Trigger signal for timer Ai start
Control signal for timer A4 reload DU1
Timer A4
D Q D Q T T
Reload
Timer A4-1
Trigger signal for transfer Three-phase output shift register (U phase)
Trigger
Timer A4 counter DUB1 U phase output signal DUB0
(One-shot timer mode)
INV11
D Q D Q T T
Timers' functions for three-phase motor control
TQ
DQ T
U(P81)
To be set to "0" when timer A4 stops
Trigger Trigger Dead time timer setting (8) n = 1 to 255 V phase output signal V phase output signal INV06 V phase output control circuit
DQ T
V(P72)
Figure 1.18.5. Block diagram for three-phase waveform mode
V(P73)
DQ T For short circuit prevention Dead time timer setting (8) n = 1 to 255 W phase output signal W phase output signal DQ T DQ T Trigger Trigger INV06
Timer A1
Reload
Timer A1-1
Trigger
Timer A1 counter
(One-shot timer mode)
INV11 TQ To be set to "0" when timer A1 stops
W(P74)
Timer A2
Reload
Timer A2-1
Trigger
Timer A2 counter
W phase output control circuit
W(P75)
(One-shot timer mode) INV11 TQ To be set to "0" when timer A2 stops
Diagram for switching to P80, P81, and to P72 - P75 is not shown.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Mitsubishi microcomputers
M16C / 62 Group
Note: To use three-phase output mode, write "1" to INV12.
105
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control Triangular wave modulation
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
To generate a PWM waveform of triangular wave modulation, set "0" in the modulation mode select bit (bit 6 at 034816). Also, set "1" in the timers A4-1, A1-1, A2-1 control bit (bit 1 at 034916). In this mode, each of timers A4, A1, and A2 has two timer registers, and alternately reloads the timer register's content to the counter every time timer B2 counter's content becomes 000016. If "0" is set to the effective interrupt output specification bit (bit 1 at 034816), the frequency of interrupt requests that occur every time the timer B2 counter's value becomes 000016 can be set by use of the timer B2 counter (034D16) for setting the frequency of interrupt occurrences. The frequency of occurrences is given by (setting; setting 0). Setting "1" in the effective interrupt output specification bit (bit 1 at 034816) provides the means to choose which value of the timer A1 reload control signal to use, "0" or "1", to cause timer B2's interrupt request to occur. To make this selection, use the effective interrupt output polarity selection bit (bit 0 at 034816). An example of U phase waveform is shown in Figure 1.18.6, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 034A16). And set "0" in DUB0 (bit 1 at 034A16). In addition, set "0" in DU1 (bit 0 at 034B16) and set "1" in DUB1 (bit 1 at 034B16). Also, set "0" in the effective interrupt output specification bit (bit 1 at 034816) to set a value in the timer B2 interrupt occurrence frequency set counter. By this setting, a timer B2 interrupt occurs when the timer B2 counter's content becomes 000016 as many as (setting) times. Furthermore, set "1" in the effective interrupt output specification bit (bit 1 at 034816), set "0" in the effective interrupt polarity select bit (bit 0 at 034816) and set "1" in the interrupt occurrence frequency set counter (034D16). These settings cause a timer B2 interrupt to occur every other interval when the U phase output goes to "H". When the timer B2 counter's content becomes 000016, timer A4 starts outputting one-shot pulses. In this instance, the content of DU1 (bit 0 at 034B16) and that of DU0 (bit 0 at 034A16) are set in the three-phase output shift register (U phase), the content of DUB1 (bit 1 at 034B16) and that of DUB0 (bit 1 at 034A16) ___ are set in the three-phase shift register (U phase). After triangular wave modulation mode is selected, however, no setting is made in the shift register even though the timer B2 counter's content becomes 000016. ___ The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the U terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (038F16, 038E16) and when timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one posi___ tion, and the value of DU1 and that of DUB1 are output to the U phase output signal and to U phase output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for ___ setting the time over which the "L" level of the U phase waveform does not lap over the "L" level of the U phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0" by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, "0" already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the timer A4 counter starts counting the value written to timer A4-1 (034716, 034616), and starts outputting one-shot pulses. When timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, but if the three-phase output shift register's content changes from "0" to "1" as a result of the shift, the output level changes from "L" to "H" without waiting for the timer for setting dead time to finish outputting one-shot pulses. A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the U phase side is used, the workings in generating a U phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U
106
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the
___ ___
values of timer B2, timer A4, and timer A4-1. In dealing with the V and W phases, and V and W phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with ___ the U and U phases to generate an intended waveform.
A carrier wave of triangular waveform
Carrier wave Signal wave
Timer B2
Trigger signal for timer Ai start (timer B2 overflow signal) Timer A4 output
m
Timber B2 interrupt occurres Rewriting timer A4 and timer A4-1. Possible to set the number of overflows to generate an interrupt by use of the interrupt occurrences frequency set circuit
n
m
n
m
p
o
Control signal for timer A4 reload U phase output signal U phase output signal U phase U phase
The three-phase shift register shifts in synchronization with the falling edge of the A4 output.
Dead time Note: Set to triangular wave modulation mode and to three-phase mode 1.
Figure 1.18.6. Timing chart of operation (1)
107
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Assigning certain values to DU0 (bit 0 at 034A16) and DUB0 (bit 1 at 034A16), and to DU1 (bit 0 at 034B16) and DUB1 (bit 1 at 034B16) allows the user to output the waveforms as shown in Figure 1.18.7, that is, to ___ ___ output the U phase alone, to fix U phase to "H", to fix the U phase to "H," or to output the U phase alone.
A carrier wave of triangular waveform
Carrier wave Signal wave
Timer B2
Rewriting timer A4 every timer B2 interrupt occurres. Timer B2 interrupt occurres. Rewriting three-phase buffer register.
Trigger signal for timer Ai start (timer B2 overflow signal) Timer A4 output
m n
m
n
m
p
o
Control signal for timer A4 reload U phase output signal U phase output signal U phase U phase
Dead time Note: Set to triangular wave modulation mode and to three-phase mode 0.
Figure 1.18.7. Timing chart of operation (2)
108
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Sawtooth modulation
To generate a PWM waveform of sawtooth wave modulation, set "1" in the modulation mode select bit (bit 6 at 034816). Also, set "0" in the timers A4-1, A1-1, and A2-1 control bit (bit 1 at 034916). In this mode, the timer registers of timers A4, A1, and A2 comprise conventional timers A4, A1, and A2 alone, and reload the corresponding timer register's content to the counter every time the timer B2 counter's content becomes 000016. The effective interrupt output specification bit (bit 1 at 034816) and the effective interrupt output polarity select bit (bit 0 at 034816) go nullified. An example of U phase waveform is shown in Figure 1.18.8, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 034A16), and set "0" in DUB0 (bit 1 at 034A16). In addition, set "0" in DU1 (bit 0 at 034A16) and set "1" in DUB1 (bit 1 at 034A16). When the timber B2 counter's content becomes 000016, timer B2 generates an interrupt, and timer A4 starts outputting one-shot pulses at the same time. In this instance, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase output shift register (U phase), and the contents of ___ DUB1 and DUB0 are set in the three-phase output register (U phase). After this, the three-phase buffer register's content is set in the three-phase shift register every time the timer B2 counter's content becomes 000016. ___ The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the U terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (038F16, 038E16) and when timer A4 finishes outputting one-shot pulses, the three-phase output shift register's content is shifted one ___ position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to the U output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't lap over the "L" level of ___ the U phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0 "by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, 0 already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase shift register (U phase), and the contents of DUB1 and ___ DUB0 are set in the three-phase shift register (U phase) again. A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase ___ ___ output shift register on the U phase side is used, the workings in generating a U phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of ___ the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2 ___ ___ and timer A4. In dealing with the V and W phases, and V and W phases, the latter are of opposite phase ___ of the former, have the corresponding timers work similarly to dealing with the U and U phases to generate an intended waveform. ___ Setting "1" both in DUB0 and in DUB1 provides a means to output the U phase alone and to fix the U phase output to "H" as shown in Figure 1.18.9.
109
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A carrier wave of sawtooth waveform
Carrier wave Signal wave
Timer B2
Trigger signal for timer Ai start (timer B2 overflow signal)
Interrupt occurres. Rewriting the value of timer A4.
Data transfer is made from the threephase buffer register to the threephase shift register in step with the timing of the timer B overflow.
Timer A4 output
m
n
o
p
U phase output signal U phase output signal U phase U phase
The three-phase shift register shifts in synchronization with the falling edge of timer A4.
Dead time Note: Set to sawtooth modulation mode and to three-phase mode 0.
Figure 1.18.8. Timing chart of operation (3)
110
Mitsubishi microcomputers
M16C / 62 Group
Timers' functions for three-phase motor control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A carrier wave of sawtooth waveform
Carrier wave Signal wave
Timer B2
Interrupt occurres. Rewriting the value of timer A4.
Interrupt occurres. Rewriting the value of timer A4.
Trigger signal for timer Ai start (timer B2 overflow signal)
Rewriting three-phase output buffer register
Data transfer is made from the threephase buffer register to the threephase shift register in step with the timing of the timer B overflow.
Timer A4 output
m
n
p
The three-phase shift register shifts in synchronization with the falling edge of timer A4.
U phase output signal U phase output signal U phase U phase
Dead time Note: Set to sawtooth modulation mode and to three-phase mode 0.
Figure 1.18.9. Timing chart of operation (4)
111
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Serial I/O is configured as five channels: UART0, UART1, UART2, S I/O3 and S I/O4.
UART0 to 2
UART0, UART1 and UART2 each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figure 1.19.1 shows the block diagram of UART0, UART1 and UART2. Figures 1.19.2 and 1.19.3 show the block diagram of the transmit/receive unit. UARTi (i = 0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART. Although a few functions are different, UART0, UART1 and UART2 have almost the same functions. UART2, in particular, is used for the SIM interface with some extra settings added in clock-asynchronous serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level. Table 1.19.1 shows the comparison of functions of UART0 through UART2, and Figures 1.19.4 to 1.19.8 show the registers related to UARTi. Note: SIM : Subscriber Identity Module
Table 1.19.1. Comparison of functions of UART0 through UART2
Function CLK polarity selection LSB first / MSB first selection Continuous receive mode selection Transfer clock output from multiple pins selection Separate CTS/RTS pins Serial data logic switch Sleep mode selection TxD, RxD I/O polarity switch TxD, RxD port output format Parity error signal output Bus collision detection UART0 Possible Possible Possible Impossible Possible Impossible Possible Impossible CMOS output Impossible Impossible (Note 3) (Note 1) (Note 1) (Note 1) UART1 Possible Possible Possible Possible Impossible Impossible Possible Impossible CMOS output Impossible Impossible (Note 3) (Note 1) (Note 1) (Note 1) (Note 1) UART2 Possible Possible Possible Impossible Impossible Possible Impossible Possible N-channel open-drain output Possible Possible (Note 4) (Note 4) (Note 1) (Note 2) (Note 1)
Note 1: Only when clock synchronous serial I/O mode. Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode. Note 3: Only when UART mode. Note 4: Using for SIM interface.
112
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(UART0)
RxD0
UART reception
TxD0
1/16
Clock source selection
f1 f8 f32 Bit rate generator Internal (address 03A116)
Clock synchronous type
1/16
Reception control circuit
Receive clock
Transmit/ receive unit
1 / (n0+1)
External
UART transmission
Clock synchronous type
Transmission control circuit
Transmit clock
Clock synchronous type
1/2
(when internal clock is selected)
Clock synchronous type (when internal clock is selected)
CLK0
CLK polarity reversing circuit CTS/RTS disabled CTS/RTS selected
Clock synchronous type (when external clock is selected)
CTS0 / RTS0
Vcc CTS/RTS disabled CTS/RTS separated CTS0 from UART1
RTS0
CTS0
(UART1)
RxD1
Clock source selection
f1 f8 f32 Bit rate generator Internal (address 03A916)
1/16
TxD1
UART reception Reception control circuit Receive clock Transmit/ receive unit
Clock synchronous type UART transmission
1/16
1 / (n1+1)
External
Clock synchronous type Clock synchronous type
1/2 (when internal clock is selected)
Transmission control circuit
Transmit clock
CLK1 CTS1 / RTS1 / CTS0 / CLKS1
CLK polarity reversing circuit
Clock synchronous type (when internal clock is selected)
Clock synchronous type (when external clock is selected)
CTS/RTS disabled CTS/RTS separated Clock output pin select switch VCC CTS/RTS disabled CTS0
RTS1 CTS1
CTS0 to UART0 TxD polarity reversing circuit Transmit/ receive unit
(UART2)
RxD2
RxD polarity reversing circuit
UART reception
1/16
TxD2
Clock source selection f1 f8 f32 Bit rate generator Internal (address 037916)
Clock synchronous type UART transmission
1/16
Reception control circuit
Receive clock
1 / (n2+1)
External
Clock synchronous type Clock synchronous type
1/2
Transmission control circuit
Transmit clock
(when internal clock is selected)
CLK2
CLK polarity reversing circuit
Clock synchronous type (when internal clock is selected)
Clock synchronous type (when external clock is selected)
CTS/RTS selected
CTS/RTS disabled
CTS2 / RTS2
Vcc CTS/RTS disabled
RTS2
CTS2
n0 : Values set to UART0 bit rate generator (BRG0) n1 : Values set to UART1 bit rate generator (BRG1) n2 : Values set to UART2 bit rate generator (BRG2)
Figure 1.19.1. Block diagram of UARTi (i = 0 to 2)
113
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock synchronous type UART (7 bits) UART (8 bits)
1SP
PAR disabled
Clock synchronous type
UART (7 bits)
UARTi receive register
RxDi
SP 2SP
SP
PAR
PAR enabled
UART
UART (9 bits)
Clock synchronous type UART (8 bits) UART (9 bits)
0
0
0
0
0
0
0
D8
D7
D6
D5
D4
D3
D2
D1
D0
UARTi receive buffer register Address 03A616 Address 03A716 Address 03AE16 Address 03AF16
MSB/LSB conversion circuit
Data bus high-order bits Data bus low-order bits
MSB/LSB conversion circuit
D8
D7
D6
D5
D4
D3
D2
D1
D0
UARTi transmit buffer register Address 03A216 Address 03A316 Address 03AA16 Address 03AB16
UART (8 bits) UART (9 bits)
UART (9 bits)
Clock synchronous type
2SP SP SP 1SP
PAR
PAR enabled
UART
TxDi
PAR disabled Clock synchronous type
UART (7 bits)
UART (7 bits) UART (8 bits) Clock synchronous type
UARTi transmit register
"0"
SP: Stop bit PAR: Parity bit
Figure 1.19.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit
114
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
No reverse
RxD2
RxD data reverse circuit
Reverse
Clock synchronous type
1SP SP 2SP SP
PAR
PAR disabled
Clock synchronous type
UART (7 bits) UART (8 bits)
UART(7 bits)
UART2 receive register
PAR enabled
UART
UART (9 bits)
Clock synchronous type
UART (8 bits) UART (9 bits)
0
0
0
0
0
0
0
D8
D7
D6
D5
D4
D3
D2
D1
D0
UART2 receive buffer register Address 037E16 Address 037F16
Logic reverse circuit + MSB/LSB conversion circuit
Data bus high-order bits Data bus low-order bits
Logic reverse circuit + MSB/LSB conversion circuit
D8
D7
D6
D5
D4
D3
D2
D1
D0
UART2 transmit buffer register Address 037A16 Address 037B16
UART (8 bits) UART (9 bits)
PAR enabled
UART (9 bits) UART
Clock synchronous type
2SP SP SP 1SP
PAR
PAR disabled
Clock synchronous type
"0"
UART (7 bits) UART (8 bits)
Clock synchronous type
UART(7 bits)
UART2 transmit register
Error signal output disable
No reverse
Error signal output circuit
Error signal output enable Reverse
TxD data reverse circuit
TxD2
SP: Stop bit PAR: Parity bit
Figure 1.19.3. Block diagram of UART2 transmit/receive unit
115
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit buffer register
(b15) b7 (b8) b0 b7 b0
Symbol U0TB U1TB U2TB
Address 03A316, 03A216 03AB16, 03AA16 037B16, 037A16
When reset Indeterminate Indeterminate Indeterminate Function RW
Transmit data Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turn out to be indeterminate.
UARTi receive buffer register
(b15) b7 (b8) b0 b7 b0
Symbol U0RB U1RB U2RB
Address 03A716, 03A616 03AF16, 03AE16 037F16, 037E16
When reset Indeterminate Indeterminate Indeterminate Function (During UART mode) Receive data
Bit symbol
Bit name
Function (During clock synchronous serial I/O mode) Receive data
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0". ABT OER FER PER SUM Arbitration lost detecting flag (Note 2) 0 : Not detected 1 : Detected Invalid 0 : No overrun error 1 : Overrun error found 0 : No framing error 1 : Framing error found 0 : No parity error 1 : Parity error found 0 : No error 1 : Error found
Overrun error flag (Note 1) 0 : No overrun error 1 : Overrun error found Framing error flag (Note 1) Invalid Parity error flag (Note 1) Error sum flag (Note 1) Invalid Invalid
Note 1: Bits 15 through 12 are set to "0" when the serial I/O mode select bit (bits 2 to 0 at addresses 03A016, 03A816 and 037816) are set to "0002" or the receive enable bit is set to "0". (Bit 15 is set to "0" when bits 14 to 12 all are set to "0".) Bits 14 and 13 are also set to "0" when the lower byte of the UARTi receive buffer register (addresses 03A616, 03AE16 and 037E16) is read out. Note 2: Arbitration lost detecting flag is allocated to U2RB and noting but "0" may be written. Nothing is assigned in bit 11 of U0RB and U1RB. These bits can neither be set or reset. When read, the value of this bit is "0".
UARTi bit rate generator
b7 b0
Symbol U0BRG U1BRG U2BRG
Address 03A116 03A916 037916 Function
When reset Indeterminate Indeterminate Indeterminate Values that can be set 0016 to FF16 RW
Assuming that set value = n, BRGi divides the count source by n+1
Figure 1.19.4. Serial I/O-related registers (1)
116
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UiMR(i=0,1)
Address 03A016, 03A816
When reset 0016
Bit symbol SMD0 SMD1 SMD2
Bit name Serial I/O mode select bit
Function (During clock synchronous serial I/O mode) Must be fixed to 001
b2 b1 b0
Function (During UART mode)
b2 b1 b0
RW
0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited
1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited 0 : Internal clock 1 : External clock (Note) 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity 0 : Parity disabled 1 : Parity enabled 0 : Sleep mode deselected 1 : Sleep mode selected
CKDIR Internal/external clock select bit STPS PRY Stop bit length select bit
0 : Internal clock 1 : External clock (Note) Invalid
Odd/even parity select bit Invalid
PRYE SLEP
Parity enable bit Sleep select bit
Invalid Must always be "0"
Note : Set the corresponding port direction register to "0".
UART2 transmit/receive mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol U2MR
Address 037816
When reset 0016
Bit symbol SMD0 SMD1 SMD2
Bit name Serial I/O mode select bit
Function (During clock synchronous serial I/O mode) Must be fixed to 001
b2 b1 b0
Function (During UART mode)
b2 b1 b0
RW
0 0 0 : Serial I/O invalid 0 1 0 : (Note 1) 0 1 1 : Inhibited 1 1 1 : Inhibited
1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited Must always be fixed to "0" 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity 0 : Parity disabled 1 : Parity enabled 0 : No reverse 1 : Reverse Usually set to "0"
CKDIR Internal/external clock select bit STPS PRY Stop bit length select bit
0 : Internal clock 1 : External clock (Note 2) Invalid
Odd/even parity select bit Invalid
PRYE IOPOL
Parity enable bit TxD, RxD I/O polarity reverse bit
Invalid 0 : No reverse 1 : Reverse Usually set to "0"
Note 1: Bit 2 to bit 0 are set to "0102" when I2C mode is used. Note 2: Set the corresponding port direction register to "0".
Figure 1.19.5. Serial I/O-related registers (2)
117
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive control register 0
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UiC0(i=0,1) Bit symbol CLK0 CLK1 CRS
Address When reset 03A416, 03AC16 0816 Function (During clock synchronous serial I/O mode)
b1 b0 b1 b0
Bit name BRG count source select bit
Function (During UART mode) 0 0 : f1 is selected 0 1 : f8 is selected 1 0 : f32 is selected 1 1 : Inhibited
Valid when bit 4 = "0" 0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)
RW
0 0 : f1 is selected 0 1 : f8 is selected 1 0 : f32 is selected 1 1 : Inhibited
Valid when bit 4 = "0"
0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)
CTS/RTS function select bit
TXEPT
0 : Data present in transmit 0 : Data present in transmit register Transmit register empty register (during transmission) (during transmission) flag 1 : No data present in transmit 1 : No data present in transmit register (transmission completed) register (transmission completed) 0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P60 and P64 function as programmable I/O port) 0: TXDi pin is CMOS output 1: TXDi pin is N-channel open-drain output
CRD
CTS/RTS disable bit
0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P60 and P64 function as programmable I/O port) 0 : TXDi pin is CMOS output 1 : TXDi pin is N-channel open-drain output 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge
NCH
Data output select bit
CKPOL
CLK polarity select bit
Must always be "0"
UFORM Transfer format select bit 0 : LSB first 1 : MSB first
Must always be "0"
Note 1: Set the corresponding port direction register to "0". Note 2: The settings of the corresponding port register and port direction register are invalid.
UART2 transmit/receive control register 0
b7 b6 b5 b4 b3 b2 b1 b0
Symbol U2C0 Bit symbol CLK0 CLK1 CRS CTS/RTS function select bit
Address 037C16
When reset 0816 Function (During clock synchronous serial I/O mode) Function (During UART mode)
b1 b0
Bit name BRG count source select bit
RW
b1 b0
0 0 : f1 is selected 0 1 : f8 is selected 1 0 : f32 is selected 1 1 : Inhibited
Valid when bit 4 = "0"
0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)
0 0 : f1 is selected 0 1 : f8 is selected 1 0 : f32 is selected 1 1 : Inhibited
Valid when bit 4 = "0" 0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)
TXEPT
0 : Data present in transmit 0 : Data present in transmit register Transmit register empty register (during transmission) (during transmission) flag 1 : No data present in transmit 1 : No data present in transmit register (transmission completed) register (transmission completed) 0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P73 functions programmable I/O port) 0: TXDi pin is CMOS output open-drain output
CRD
CTS/RTS disable bit
0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P73 functions programmable I/O port) 0 : TXDi pin is CMOS output open-drain output 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge
Nothing is assigned.
CKPOL
: TXDi pin is N-channel 1: to be "0". In an attempt to write to this bit, write1"0". The value, if read, turns out TXDi pin is N-channel
CLK polarity select bit
Must always be "0"
UFORM Transfer format select bit 0 : LSB first 1 : MSB first (Note 3)
0 : LSB first 1 : MSB first
Note 1: Set the corresponding port direction register to "0". Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.
Figure 1.19.6. Serial I/O-related registers (3)
118
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UiC1(i=0,1)
Address 03A516,03AD16
When reset 0216
Bit symbol TE TI
Bit name Transmit enable bit Transmit buffer empty flag
Function (During clock synchronous serial I/O mode) 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register
Function (During UART mode) 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register
RW
RE RI
Receive enable bit Receive complete flag
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
UART2 transmit/receive control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol U2C1
Address 037D16
When reset 0216
Bit symbol TE TI
Bit name Transmit enable bit Transmit buffer empty flag
Function (During clock synchronous serial I/O mode) 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register 0 : Transmit buffer empty (TI = 1) 1 : Transmit is completed (TXEPT = 1) 0 : Continuous receive mode disabled 1 : Continuous receive mode enabled 0 : No reverse 1 : Reverse Must be fixed to "0"
Function (During UART mode) 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register 0 : Transmit buffer empty (TI = 1) 1 : Transmit is completed (TXEPT = 1) Invalid
RW
RE RI
Receive enable bit Receive complete flag
U2IRS UART2 transmit interrupt cause select bit
U2RRM UART2 continuous receive mode enable bit
U2LCH Data logic select bit U2ERE Error signal output enable bit
0 : No reverse 1 : Reverse 0 : Output disabled 1 : Output enabled
Figure 1.19.7. Serial I/O-related registers (4)
119
Mitsubishi microcomputers
M16C / 62 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART transmit/receive control register 2
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UCON
Address 03B016
When reset X00000002
Bit symbol U0IRS
Bit name UART0 transmit interrupt cause select bit UART1 transmit interrupt cause select bit
Function (During clock synchronous serial I/O mode)
0 : Transmit buffer empty (Tl = 1) 1 : Transmission completed
(TXEPT = 1)
Function (During UART mode)
0 : Transmit buffer empty (Tl = 1) 1 : Transmission completed (TXEPT = 1) 0 : Transmit buffer empty (Tl = 1) 1 : Transmission completed (TXEPT = 1)
RW
U1IRS
0 : Transmit buffer empty (Tl = 1) 1 : Transmission completed
(TXEPT = 1)
U0RRM UART0 continuous receive mode enable bit
0 : Continuous receive mode disabled 1 : Continuous receive mode enable 0 : Continuous receive mode disabled 1 : Continuous receive mode enabled Valid when bit 5 = "1" 0 : Clock output to CLK1 1 : Clock output to CLKS1 0 : Normal mode
(CLK output is CLK1 only)
Invalid
U1RRM UART1 continuous receive mode enable bit
Invalid
CLKMD0 CLK/CLKS select bit 0
Invalid
CLKMD1 CLK/CLKS select bit 1 (Note)
Must always be "0"
1 : Transfer clock output from multiple pins function selected RCSP Separate CTS/RTS bit 0 : CTS/RTS shared pin 1 : CTS/RTS separated 0 : CTS/RTS shared pin 1 : CTS/RTS separated
Nothing is assigned. In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate. Note: When using multiple pins to output the transfer clock, the following requirements must be met: * UART1 internal/external clock select bit (bit 3 at address 03A816) = "0".
UART2 special mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol U2SMR
Address 037716
When reset 0016
Bit symbol IICM ABC BBS LSYN
Bit name IIC mode selection bit Arbitration lost detecting flag control bit Bus busy flag SCLL sync output enable bit Bus collision detect sampling clock select bit Auto clear function select bit of transmit enable bit Transmit start condition select bit
Function (During clock synchronous serial I/O mode) 0 : Normal mode 1 : IIC mode 0 : Update per bit 1 : Update per byte
0 : STOP condition detected 1 : START condition detected
Function (During UART mode) Must always be "0" Must always be "0" Must always be "0"
RW
(Note)
0 : Disabled 1 : Enabled Must always be "0"
Must always be "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer A0 0 : No auto clear function 1 : Auto clear at occurrence of bus collision 0 : Ordinary 1 : Falling edge of RxD2
ABSCS
ACSE
Must always be "0"
SSS
Must always be "0"
Reserved bit Note: Nothing but "0" may be written.
Always set to "0"
Figure 1.19.8. Serial I/O-related registers (5)
120
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode (1) Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 1.19.2 and 1.19.3 list the specifications of the clock synchronous serial I/O mode. Figure 1.19.9 shows the UARTi transmit/receive mode register. Table 1.19.2. Specifications of clock synchronous serial I/O mode (1) Specification * Transfer data length: 8 bits * When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "0") : fi/ 2(n+1) (Note 1) fi = f1, f8, f32 * When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "1") : Input from CLKi pin _______ _______ _______ _______ Transmission/reception control * CTS function/RTS function/CTS, RTS function chosen to be invalid Transmission start condition * To start transmission, the following requirements must be met: _ Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1" _ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0" _______ _______ _ When CTS function selected, CTS input level = "L" * Furthermore, if external clock is selected, the following requirements must also be met: _ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0": CLKi input level = "H" _ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1": CLKi input level = "L" Reception start condition * To start reception, the following requirements must be met: _ Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1" _ Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1" _ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0" * Furthermore, if external clock is selected, the following requirements must also be met: _ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0": CLKi input level = "H" _ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1": CLKi input level = "L" * When transmitting Interrupt request _ Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at generation timing address 037D16) = "0": Interrupts requested when data transfer from UARTi transfer buffer register to UARTi transmit register is completed _ Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at address 037D16) = "1": Interrupts requested when data transmission from UARTi transfer register is completed * When receiving _ Interrupts requested when data transfer from UARTi receive register to UARTi receive buffer register is completed Error detection * Overrun error (Note 2) This error occurs when the next data is ready before contents of UARTi receive buffer register are read out Note 1: "n" denotes the value 0016 to FF16 that is set to the UART bit rate generator. Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1". Item Transfer data format Transfer clock
121
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.19.4. Specifications of clock synchronous serial I/O mode (2) Item Select function Specification * CLK polarity selection Whether transmit data is output/input at the rising edge or falling edge of the transfer clock can be selected * LSB first/MSB first selection Whether transmission/reception begins with bit 0 or bit 7 can be selected * Continuous receive mode selection Reception is enabled simultaneously by a read from the receive buffer register * Transfer clock output from multiple pins selection (UART1) (Note) UART1 transfer clock can be chosen by software to be output from one of the two pins set _______ _______ * Separate CTS/RTS pins (UART0) (Note) _______ _______ UART0 CTS and RTS pins each can be assigned to separate pins * Switching serial data logic (UART2) Whether to reverse data in writing to the transmission buffer register or reading the reception buffer register can be selected. * TxD, RxD I/O polarity reverse (UART2) This function is reversing TxD port output and RxD port input. All I/O data level is reversed.
_______ _______
Note: The transfer clock output from multiple pins and the separate CTS/RTS pins functions cannot be selected simultaneously.
122
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive mode registers
b7 b6 b5 b4 b3 b2 b1 b0
0
001
Symbol UiMR(i=0,1) Bit symbol SMD0 SMD1 SMD2 CKDIR STPS PRY PRYE SLEP
Address 03A016, 03A816 Bit name
When reset 0016 Function
b2 b1 b0
RW
Serial I/O mode select bit
0 0 1 : Clock synchronous serial I/O mode 0 : Internal clock 1 : External clock (Note)
Internal/external clock select bit
Invalid in clock synchronous serial I/O mode 0 (Must always be "0" in clock synchronous serial I/O mode)
Note : Set the corresponding port direction register to "0".
UART2 transmit/receive mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
001
Symbol U2MR Bit symbol SMD0 SMD1 SMD2 CKDIR STPS PRY PRYE IOPOL
Address 037816 Bit name
When reset 0016 Function
b2 b1 b0
RW
Serial I/O mode select bit
0 0 1 : Clock synchronous serial I/O mode 0 : Internal clock 1 : External clock (Note 2)
Internal/external clock select bit
Invalid in clock synchronous serial I/O mode TxD, RxD I/O polarity reverse bit (Note 1) 0 : No reverse 1 : Reverse
Note 1: Usually set to "0". Note 2: Set the corresponding port direction register to "0".
Figure 1.19.9. UARTi transmit/receive mode register in clock synchronous serial I/O mode
123
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.19.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. This _______ table shows the pin functions when the transfer clock output from multiple pins and the separate CTS/ _______ RTS pins functions are not selected. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.) Table 1.19.4. Input/output pin functions in clock synchronous serial I/O mode
Pin name Function Method of selection (Outputs dummy data when performing reception only) Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only) Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0" Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "1" Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16, bit 2 at address 03EF16) = "0" CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0" CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1" CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"
_______ _______
TxDi Serial data output (P63, P67, P70) Serial data input RxDi (P62, P66, P71) CLKi Transfer clock output (P61, P65, P72) Transfer clock input
CTSi/RTSi CTS input (P60, P64, P73)
RTS output Programmable I/O port
(when transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)
124
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Example of transmit timing (when internal clock is selected)
Tc
Transfer clock
"1" "0" "1" "0" Transferred from UARTi transmit buffer register to UARTi transmit register "H" Data is set in UARTi transmit buffer register
Transmit enable bit (TE) Transmit buffer empty flag (Tl) CTSi
"L"
TCLK
Stopped pulsing because CTS = "H"
Stopped pulsing because transfer enable bit = "0"
CLKi
TxDi Transmit register empty flag (TXEPT)
"1" "0"
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1 D2 D3 D4 D5 D6 D7
Transmit interrupt "1" request bit (IR) "0"
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings: * Internal clock is selected. * CTS function is selected. * CLK polarity select bit = "0". * Transmit interrupt cause select bit = "0". Tc = TCLK = 2(n + 1) / fi fi: frequency of BRGi count source (f1, f8, f32) n: value set to BRGi
* Example of receive timing (when external clock is selected)
Receive enable bit (RE) Transmit enable bit (TE) Transmit buffer empty flag (Tl) RTSi
"1" "0" "1" "0" "1" "0" "H" "L"
Dummy data is set in UARTi transmit buffer register
Transferred from UARTi transmit buffer register to UARTi transmit register
1 / fEXT
Receive data is taken in
CLKi
RxDi Receive complete "1" flag (Rl) "0" Receive interrupt request bit (IR)
"1" "0"
D0 D1 D2 D3 D4 D5 D6 D7
Transferred from UARTi receive register to UARTi receive buffer register
D0 D1 D2
D3 D4 D5
Read out from UARTi receive buffer register
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings: * External clock is selected. * RTS function is selected. * CLK polarity select bit = "0". fEXT: frequency of external clock Meet the following conditions are met when the CLK input before data reception = "H" * Transmit enable bit "1" * Receive enable bit "1" * Dummy data write to UARTi transmit buffer register
Figure 1.19.10. Typical transmit/receive timings in clock synchronous serial I/O mode
125
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(a) Polarity select function As shown in Figure 1.19.11, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) allows selection of the polarity of the transfer clock.
* When CLK polarity select bit = "0"
CLKi TXDi RXDi D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7 D7
Note 1: The CLK pin level when not transferring data is "H".
* When CLK polarity select bit = "1"
CLKi TXDi RXDi D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7 D7
Note 2: The CLK pin level when not transferring data is "L".
Figure 1.19.11. Polarity of transfer clock (b) LSB first/MSB first select function As shown in Figure 1.19.12, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16, 037C16) = "0", the transfer format is "LSB first"; when the bit = "1", the transfer format is "MSB first".
* When transfer format select bit = "0"
CLKi TXDi RXDi D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7
LSB first
D7
* When transfer format select bit = "1"
CLKi TXDi RXDi D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0
MSB first
D0
Note: This applies when the CLK polarity select bit = "0".
Figure 1.19.12. Transfer format
126
Mitsubishi microcomputers
M16C / 62 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(c) Transfer clock output from multiple pins function (UART1) This function allows the setting two transfer clock output pins and choosing one of the two to output a clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.19.13.) The multiple pins function is valid only when the internal clock is selected for UART1. Note that when _______ _______ this function is selected, UART1 CTS/RTS function cannot be used.
Microcomputer
TXD1 (P67)
CLKS1 (P64) CLK1 (P65) IN CLK IN CLK
Note: This applies when the internal clock is selected and transmission is performed only in clock synchronous serial I/O mode.
Figure 1.19.13. The transfer clock output from the multiple pins function usage (d) Continuous receive mode If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is set to "1", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer register back again.
_______ _______
(e) Separate CTS/RTS pins function (UART0) This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method of setting and the input/output pin functions are both the same, so refer to select function in the next section, "(2) Clock asynchronous serial I/O (UART) mode". Note that this function is invalid if the transfer clock output from the multiple pins function is selected.
(f) Serial data logic switch function (UART2) When the data logic select bit (bit6 at address 037D16) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 1.19.14 shows the example of serial data logic switch timing.
*When LSB first
Transfer clock TxD2
"H" "L" "H"
(no reverse) "L"
D0
D1
D2
D3
D4
D5
D6
D7
TxD2
"H"
(reverse) "L"
D0
D1
D2
D3
D4
D5
D6
D7
Figure 1.19.14. Serial data logic switch timing
127
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode (2) Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 1.19.5 and 1.19.6 list the specifications of the UART mode. Figure 1.19.15 shows the UARTi transmit/receive mode register. Table 1.19.5. Specifications of UART Mode (1) Item Transfer data format Specification * Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected * Start bit: 1 bit * Parity bit: Odd, even, or nothing as selected * Stop bit: 1 bit or 2 bits as selected * When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "0") : fi/16(n+1) (Note 1) fi = f1, f8, f32 * When external clock is selected (bit 3 at addresses 03A016, 03A816 ="1") : fEXT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)
_______ _______ _______ _______
Transfer clock
Transmission/reception control * CTS function/RTS function/CTS, RTS function chosen to be invalid Transmission start condition * To start transmission, the following requirements must be met: - Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1" - Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0" _______ _______ - When CTS function selected, CTS input level = "L" Reception start condition * To start reception, the following requirements must be met: - Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1" - Start bit detection Interrupt request * When transmitting generation timing - Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at address 037D16) = "0": Interrupts requested when data transfer from UARTi transfer buffer register to UARTi transmit register is completed - Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at address 037D16) = "1": Interrupts requested when data transmission from UARTi transfer register is completed * When receiving - Interrupts requested when data transfer from UARTi receive register to UARTi receive buffer register is completed Error detection * Overrun error (Note 3) This error occurs when the next data is ready before contents of UARTi receive buffer register are read out * Framing error This error occurs when the number of stop bits set is not detected * Parity error This error occurs when if parity is enabled, the number of 1's in parity and character bits does not match the number of 1's set * Error sum flag This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered Note 1: `n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator. Note 2: fEXT is input from the CLKi pin. Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".
128
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
Table 1.19.6. Specifications of UART Mode (2) Item
_______ _______
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Specification * Separate CTS/RTS pins (UART0) _______ _______ UART0 CTS and RTS pins each can be assigned to separate pins * Sleep mode selection (UART0, UART1) This mode is used to transfer data to and from one of multiple slave microcomputers * Serial data logic switch (UART2) This function is reversing logic value of transferring data. Start bit, parity bit and stop bit are not reversed. * TXD, RXD I/O polarity switch This function is reversing TXD port output and RXD port input. All I/O data level is reversed.
Select function
129
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit / receive mode registers
b7 b6 b5 b4 b3 b2 b1 b0
Symbol UiMR(i=0,1)
Address 03A016, 03A816
When reset 0016
Bit symbol
SMD0 SMD1 SMD2 CKDIR STPS PRY
Bit name
Serial I/O mode select bit
b2 b1 b0
Function
1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 : Internal clock 1 : External clock (Note) 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity 0 : Parity disabled 1 : Parity enabled 0 : Sleep mode deselected 1 : Sleep mode selected
RW
Internal / external clock select bit Stop bit length select bit Odd / even parity select bit Parity enable bit Sleep select bit
PRYE SLEP
Note : Set the corresponding port direction register to "0".
UART2 transmit / receive mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol U2MR
Address 037816
When reset 0016
Bit symbol
SMD0 SMD1 SMD2 CKDIR STPS PRY
Bit name
Serial I/O mode select bit
b2 b1 b0
Function
1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long Must always be fixed to "0" 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity 0 : Parity disabled 1 : Parity enabled 0 : No reverse 1 : Reverse
RW
Internal / external clock select bit Stop bit length select bit Odd / even parity select bit Parity enable bit TxD, RxD I/O polarity reverse bit (Note)
PRYE IOPOL
Note: Usually set to "0".
Figure 1.19.15. UARTi transmit/receive mode register in UART mode
130
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.19.7 lists the functions of the input/output pins during UART mode. This table shows the pin _______ _______ functions when the separate CTS/RTS pins function is not selected. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.) Table 1.19.7. Input/output pin functions in UART mode
Pin name Function TxDi Serial data output (P63, P67, P70) RxDi Serial data input (P62, P66, P71) CLKi Programmable I/O port (P61, P65, P72) Transfer clock input Method of selection
Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only) Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0" Internal/external clock select bit (bit 3 at address 03A016, 03A816) = "1" Port P61, P65 direction register (bits 1 and 5 at address 03EE16) = "0" (Do not set external clock for UART2) CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0" CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1" CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"
CTSi/RTSi CTS input (P60, P64, P73)
RTS output Programmable I/O port
________ _______
(when separate CTS/RTS pins function is not selected)
131
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)
The transfer clock stops momentarily as CTS is "H" when the stop bit is checked. The transfer clock starts as the transfer starts immediately CTS changes to "L".
Tc
Transfer clock Transmit enable bit(TE) Transmit buffer empty flag(TI)
"1" "0" "1" "0"
Data is set in UARTi transmit buffer register.
Transferred from UARTi transmit buffer register to UARTi transmit register
"H"
CTSi
"L"
Start bit TxDi
"1" Transmit register empty flag (TXEPT) "0" "1" "0"
Parity bit
P
Stop bit
SP
Stopped pulsing because transmit enable bit = "0"
ST D0 D1
ST D0 D1 D2 D3 D4 D5 D6 D7
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
Transmit interrupt request bit (IR)
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings : * Parity is enabled. * One stop bit. * CTS function is selected. * Transmit interrupt cause select bit = "1". Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT fi : frequency of BRGi count source (f1, f8, f32) fEXT : frequency of BRGi count source (external clock) n : value set to BRGi
* Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)
Tc
Transfer clock Transmit enable bit(TE) Transmit buffer empty flag(TI)
"1" "0" "1" "0"
Data is set in UARTi transmit buffer register
Transferred from UARTi transmit buffer register to UARTi transmit register Start bit TxDi
"1" Transmit register empty flag (TXEPT) "0" "1" "0"
Stop bit
Stop bit
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SPSP ST D0 D1
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP SP
Transmit interrupt request bit (IR)
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings : * Parity is disabled. * Two stop bits. * CTS function is disabled. * Transmit interrupt cause select bit = "0". Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT fi : frequency of BRGi count source (f1, f8, f32) fEXT : frequency of BRGi count source (external clock) n : value set to BRGi
Figure 1.19.16. Typical transmit timings in UART mode(UART0,UART1)
132
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)
Tc
Transfer clock Transmit enable bit(TE) Transmit buffer empty flag(TI)
"1" "0" "1" "0" Data is set in UART2 transmit buffer register
Note
Transferred from UART2 transmit buffer register to UARTi transmit register Start bit
ST D0 D1
TxD2
Parity bit
D2 D3 D4 D5 D6 D7 P
Stop bit
SP ST D0 D1 D2 D3 D4 D5 D6 D7 P SP
"1" Transmit register empty flag (TXEPT) "0"
Transmit interrupt request bit (IR)
"1" "0"
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings : * Parity is enabled. * One stop bit. * Transmit interrupt cause select bit = "1". Tc = 16 (n + 1) / fi fi : frequency of BRG2 count source (f1, f8, f32) n : value set to BRG2
Note: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.
Figure 1.19.17. Typical transmit timings in UART mode(UART2)
133
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
* Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)
BRGi count source Receive enable bit RxDi "1" "0" Start bit Sampled "L" Receive data taken in Transfer clock Receive complete flag RTSi Receive interrupt request bit Reception triggered when transfer clock "1" is generated by falling edge of start bit "0" "H" "L" "1" "0" Cleared to "0" when interrupt request is accepted, or cleared by software The above timing applies to the following settings : *Parity is disabled. *One stop bit. *RTS function is selected. Transferred from UARTi receive register to UARTi receive buffer register
Stop bit
D0
D1
D7
Figure 1.19.18. Typical receive timing in UART mode
_______ _______
(a) Separate CTS/RTS pins function (UART0) _______ _______ _______ Setting the CTS/RTS separate bit (bit 6 of address 03B016) to "1" inputs/outputs the CTS signal and _______ _______ _______ _______ _______ RTS signal from different pins. Choose which to use, CTS or RTS, by use of the CTS/RTS function select bit (bit 2 of address 03A416). This function is effective in UART0 only. With this function cho_______ _______ _______ _______ sen, the user cannot use the CTS/RTS function. Set "0" both to the CTS/RTS function select bit (bit _______ _______ 2 of address 03AC16) and to the CTS/RTS disable bit (bit 4 of address 03AC16).
Microcomputer
TXD0 (P63) RXD0 (P62) IN OUT
IC
RTS0 (P60) CTS0 (P64)
CTS RTS
Note : The user cannot use CTS and RTS at the same time.
_______ _______
Figure 1.19.19. The separate CTS/RTS pins function usage (b) Sleep mode (UART0, UART1) This mode is used to transfer data between specific microcomputers among multiple microcomputers connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses 03A016, 03A816) is set to "1" during reception. In this mode, the unit performs receive operation when the MSB of the received data = "1" and does not perform receive operation when the MSB = "0".
134
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(c) Function for switching serial data logic (UART2) When the data logic select bit (bit 6 of address 037D16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 1.19.20 shows the example of timing for switching serial data logic.
* When LSB first, parity enabled, one stop bit
Transfer clock TxD2
(no reverse)
"H" "L" "H" "L" "H" "L"
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
TxD2
(reverse)
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
ST : Start bit P : Even parity SP : Stop bit
Figure 1.19.20. Timing for switching serial data logic
(d) TxD, RxD I/O polarity reverse function (UART2) This function is to reverse TXD pin output and RXD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to "0" (not to reverse) for usual use.
(e) Bus collision detection function (UART2) This function is to sample the output level of the TXD pin and the input level of the RXD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.19.21 shows the example of detection timing of a buss collision (in UART mode).
Transfer clock
"H" "L"
TxD2
"H" "L"
ST
SP
RxD2 Bus collision detection interrupt request signal Bus collision detection interrupt request bit
"H" "L" "1" "0" "1" "0"
ST
SP
ST : Start bit SP : Stop bit
Figure 1.19.21. Detection timing of a bus collision (in UART mode)
135
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(3) Clock-asynchronous serial I/O mode (used for the SIM interface)
The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table 1.19.8 shows the specifications of clock-asynchronous serial I/O mode (used for the SIM interface). Table 1.19.8. Specifications of clock-asynchronous serial I/O mode (used for the SIM interface) Item Transfer data format Specification * Transfer data 8-bit UART mode (bit 2 through bit 0 of address 037816 = "1012") * One stop bit (bit 4 of address 037816 = "0") * With the direct format chosen Set parity to "even" (bit 5 and bit 6 of address 037816 = "1" and "1" respectively) Set data logic to "direct" (bit 6 of address 037D16 = "0"). Set transfer format to LSB (bit 7 of address 037C16 = "0"). * With the inverse format chosen Set parity to "odd" (bit 5 and bit 6 of address 037816 = "0" and "1" respectively) Set data logic to "inverse" (bit 6 of address 037D16 = "1") Set transfer format to MSB (bit 7 of address 037C16 = "1") * With the internal clock chosen (bit 3 of address 037816 = "0") : fi / 16 (n + 1) (Note 1) : fi=f1, f8, f32 (Do not set external clock)
_______ _______
Transfer clock
Transmission / reception control * Disable the CTS and RTS function (bit 4 of address 037C16 = "1") Other settings * The sleep mode select function is not available for UART2 * Set transmission interrupt factor to "transmission completed" (bit 4 of address 037D16 = "1") Transmission start condition * To start transmission, the following requirements must be met: - Transmit enable bit (bit 0 of address 037D16) = "1" - Transmit buffer empty flag (bit 1 of address 037D16) = "0" Reception start condition * To start reception, the following requirements must be met: - Reception enable bit (bit 2 of address 037D16) = "1" - Detection of a start bit Interrupt request * When transmitting generation timing When data transmission from the UART2 transfer register is completed (bit 4 of address 037D16 = "1") * When receiving When data transfer from the UART2 receive register to the UART2 receive buffer register is completed Error detection * Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 2) * Framing error (see the specifications of clock-asynchronous serial I/O) * Parity error (see the specifications of clock-asynchronous serial I/O) - On the reception side, an "L" level is output from the TXD2 pin by use of the parity error signal output function (bit 7 of address 037D16 = "1") when a parity error is detected - On the transmission side, a parity error is detected by the level of input to the RXD2 pin when a transmission interrupt occurs * The error sum flag (see the specifications of clock-asynchronous serial I/O) Note 1: `n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator. Note 2: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".
136
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Tc
Transfer clock Transmit enable bit(TE) Transmit buffer empty flag(TI)
"1" "0" "1" "0" Data is set in UART2 transmit buffer register Note 1
Transferred from UART2 transmit buffer register to UART2 transmit register Start bit Parity bit
P
Stop bit
SP ST D0 D1 D2 D3 D4 D5 D6 D7 P SP
TxD2 RxD2
ST D0 D1 D2 D3 D4 D5 D6 D7
A "L" level returns from TxD2 due to the occurrence of a parity error.
Signal conductor level (Note 2)
"1" Transmit register empty flag (TXEPT) "0" "1" "0"
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
ST D0 D1 D2 D3 D4 D5 D6 D7 The level is detected by the interrupt routine.
P
SP
The level is detected by the interrupt routine.
Transmit interrupt request bit (IR)
Shown in ( ) are bit symbols. The above timing applies to the following settings : * Parity is enabled. * One stop bit. * Transmit interrupt cause select bit = "1".
Cleared to "0" when interrupt request is accepted, or cleared by software Tc = 16 (n + 1) / fi fi : frequency of BRG2 count source (f1, f8, f32) n : value set to BRG2
Note 1: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing. Note 2: Equal in waveform because TxD2 and RxD2 are connected.
Tc
Transfer clock Receive enable bit (RE)
"1" "0"
Start bit
Parity bit
P
Stop bit
SP ST D0 D1 D2 D3 D4 D5 D6 D7 P SP
RxD2 TxD2
ST D0 D1 D2 D3 D4 D5 D6 D7
A "L" level returns from TxD2 due to the occurrence of a parity error.
Signal conductor level (Note) Receive complete flag (RI) Receive interrupt request bit (IR)
"1" "0" "1" "0"
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
Read to receive buffer
Read to receive buffer
Cleared to "0" when interrupt request is accepted, or cleared by software Shown in ( ) are bit symbols. The above timing applies to the following settings : * Parity is enabled. * One stop bit. * Transmit interrupt cause select bit = "0". Tc = 16 (n + 1) / fi fi : frequency of BRG2 count source (f1, f8, f32) n : value set to BRG2
Note: Equal in waveform because TxD2 and RxD2 are connected.
Figure 1.19.22. Typical transmit/receive timing in UART mode (used for the SIM interface)
137
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(a) Function for outputting a parity error signal With the error signal output enable bit (bit 7 of address 037D16) assigned "1", you can output an "L" level from the TxD2 pin when a parity error is detected. In step with this function, the generation timing of a transmission completion interrupt changes to the detection timing of a parity error signal. Figure 1.19.23 shows the output timing of the parity error signal.
* LSB first
Transfer clock RxD2 TxD2 Receive complete flag
"H" "L" "H" "L" "H" "L" "1" "0"
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
Hi-Z
ST : Start bit P : Even Parity SP : Stop bit
Figure 1.19.23. Output timing of the parity error signal
(b) Direct format/inverse format Connecting the SIM card allows you to switch between direct format and inverse format. If you choose the direct format, D0 data is output from TxD2. If you choose the inverse format, D7 data is inverted and output from TxD2. Figure 1.19.24 shows the SIM interface format.
Transfer clcck TxD2 (direct) TxD2 (inverse) D0 D1 D2 D3 D4 D5 D6 D7 P
D7
D6
D5
D4
D3
D2
D1
D0
P P : Even parity
Figure 1.19.24. SIM interface format
138
Mitsubishi microcomputers
M16C / 62 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.19.25 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply pull-up.
Microcomputer
SIM card TxD2 RxD2
Figure 1.19.25. Connecting the SIM interface
139
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register UART2 Special Mode Register
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The UART2 special mode register (address 037716) is used to control UART2 in various ways. Figure 1.19.26 shows the UART2 special mode register.
UART2 special mode register
b7 b6 b5 b4 b3 b2 b1 b0
0
Symbol U2SMR
Address 037716
When reset 0016
Bit symbol IICM ABC BBS LSYN ABSCS
Bit name I 2C mode selection bit Arbitration lost detecting flag control bit Bus busy flag SCLL sync output enable bit Bus collision detect sampling clock select bit Auto clear function select bit of transmit enable bit Transmit start condition select bit
Function (During clock synchronous serial I/O mode) 0 : Normal mode 1 : I2 C mode 0 : Update per bit 1 : Update per byte
0 : STOP condition detected 1 : START condition detected
Function (During UART mode) Must always be "0" Must always be "0" Must always be "0"
RW
(Note)
0 : Disabled 1 : Enabled Must always be "0"
Must always be "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer A0 0 : No auto clear function 1 : Auto clear at occurrence of bus collision 0 : Ordinary 1 : Falling edge of RxD2
ACSE
Must always be "0"
SSS
Must always be "0"
Reserved bit Note: Nothing but "0" may be written.
Always set to "0"
Figure 1.19.26. UART2 special mode register Table 1.19.9. Features in I2C mode
Function 1 2 3 4 5 6 7 8 9 Factor of interrupt number 10 (Note 2) Factor of interrupt number 15 (Note 2) Factor of interrupt number 16 (Note 2) UART2 transmission output delay P70 at the time when UART2 is in use P71 at the time when UART2 is in use P72 at the time when UART2 is in use DMA1 factor at the time when 1 1 0 1 is assigned to the DMA request factor selection bits Noise filter width Normal mode Bus collision detection UART2 transmission UART2 reception Not delayed TxD2 (output) RxD2 (input) CLK2 UART2 reception 15ns Reading the terminal when 0 is assigned to the direction register H level (when 0 is assigned to the CLK polarity select bit) I2C mode (Note 1) Start condition detection or stop condition detection No acknowledgment detection (NACK) Acknowledgment detection (ACK) Delayed SDA (input/output) (Note 3) SCL (input/output) P72 Acknowledgment detection (ACK) 50ns Reading the terminal regardless of the value of the direction register The value set in latch P70 when the port is selected
10 Reading P71 11 Initial value of UART2 output
Note 1: Make the settings given below when I2C mode is in use. Set 0 1 0 in bits 2, 1, 0 of the UART2 transmission/reception mode register. Disable the RTS/CTS function. Choose the MSB First function. Note 2: Follow the steps given below to switch from a factor to another. 1. Disable the interrupt of the corresponding number. 2. Switch from a factor to another. 3. Reset the interrupt request flag of the corresponding number. 4. Set an interrupt level of the corresponding number. Note 3: Set an initial value of SDA transmission output when serial I/O is invalid.
140
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In the first place, the control bits related to the I2C bus (simplified I2C bus) interface are explained. Bit 0 of the UART special mode register (037716) is used as the I2C mode selection bit. Setting "1" in the I2C mode select bit (bit 0) goes the circuit to achieve the I2C bus (simplified I2C bus) interface effective. Table 1.19.9 shows the relation between the I2C mode select bit and respective control workings. Since this function uses clock-synchronous serial I/O mode, set this bit to "0" in UART mode.
P70 through P72 conforming to the simplified I 2C bus
P70/TxD2/SDA
Timer Selector
I/O UART2
D
To DMA0, DMA1
IICM=1 delay IICM=0
Transmission register
UART2
IICM=0 IICM=1
UART2 transmission/ NACK interrupt request To DMA0
Q T
Noize Filter
Arbitration
IICM=1 IICM=0 Reception register UART2 IICM=0 IICM=1
Timer
UART2 reception/ACK interrupt request DMA1 request
Start condition detection
S
Stop condition detection
Falling edge detection P71/RxD2/SCL I/O
Q
RQ
Bus busy
D T DQ
NACK
Q
L-synchronous output enabling bit
R
Data bus
T
ACK
Selector
(Port P71 output data latch) UART2 IICM=1
9th pulse IICM=1 CLK
Internal clock Bus collision detection
Bus collision/start, stop condition detection interrupt request
Noize Filter Noize Filter
IICM=1
IICM=0
External clock
IICM=0 UART2 IICM=0 UART2
P72/CLK2
Selector
I/O Timer
Port reading * With IICM set to 1, the port terminal is to be readable even if 1 is assigned to P71 of the direction register.
Figure 1.19.27. Functional block diagram for I2C mode Figure 1.19.27 shows the functional block diagram for I2C mode. Setting "1" in the I2C mode selection bit (IICM) causes ports P70, P71, and P72 to work as data transmission-reception terminal SDA, clock inputoutput terminal SCL, and port P72 respectively. A delay circuit is added to the SDA transmission output, so the SDA output changes after SCL fully goes to "L". An attempt to read Port P71 (SCL) results in getting the terminal's level regardless of the content of the port direction register. The initial value of SDA transmission output in this mode goes to the value set in port P70. The interrupt factors of the bus collision detection interrupt, UART2 transmission interrupt, and of UART2 reception interrupt turn to the start/stop condition detection interrupt, acknowledgment non-detection interrupt, and acknowledgment detection interrupt respectively. The start condition detection interrupt refers to the interrupt that occurs when the falling edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The stop condition detection interrupt refers to the interrupt that occurs when the rising edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The bus busy flag (bit 2 of the UART2 special mode register) is set to "1" by the start condition detection, and set to "0" by the stop condition detection.
141
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The acknowledgment non-detection interrupt refers to the interrupt that occurs when the SDA terminal level is detected still staying "H" at the rising edge of the 9th transmission clock. The acknowledgment detection interrupt refers to the interrupt that occurs when SDA terminal's level is detected already went to "L" at the 9th transmission clock. Also, assigning 1 1 0 1 (UART2 reception) to the DMA1 request factor select bits provides the means to start up the DMA transfer by the effect of acknowledgment detection. Bit 1 of the UART2 special mode register (037716) is used as the arbitration loss detecting flag control bit. Arbitration means the act of detecting the nonconformity between transmission data and SDA terminal data at the timing of the SCL rising edge. This detecting flag is located at bit 3 of the UART2 reception buffer register (037F16), and "1" is set in this flag when nonconformity is detected. Use the arbitration lost detecting flag control bit to choose which way to use to update the flag, bit by bit or byte by byte. When setting this bit to "1" and updated the flag byte by byte if nonconformity is detected, the arbitration lost detecting flag is set to "1" at the falling edge of the 9th transmission clock. If update the flag byte by byte, must judge and clear ("0") the arbitration lost detecting flag after completing the first byte acknowledge detect and before starting the next one byte transmission. Bit 3 of the UART2 special mode register is used as SCL- and L-synchronous output enable bit. Setting this bit to "1" goes the P71 data register to "0" in synchronization with the SCL terminal level going to "L".
142
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Some other functions added are explained here. Figure 1.19.28 shows their workings. Bit 4 of the UART2 special mode register is used as the bus collision detect sampling clock select bit. The bus collision detect interrupt occurs when the RxD2 level and TxD2 level do not match, but the nonconformity is detected in synchronization with the rising edge of the transfer clock signal if the bit is set to "0". If this bit is set to "1", the nonconformity is detected at the timing of the overflow of timer A0 rather than at the rising edge of the transfer clock. Bit 5 of the UART2 special mode register is used as the auto clear function select bit of transmit enable bit. Setting this bit to "1" automatically resets the transmit enable bit to "0" when "1" is set in the bus collision detect interrupt request bit (nonconformity). Bit 6 of the UART2 special mode register is used as the transmit start condition select bit. Setting this bit to "1" starts the TxD transmission in synchronization with the falling edge of the RxD terminal.
1. Bus collision detect sampling clock select bit (Bit 4 of the UART2 special mode register)
0: Rising edges of the transfer clock
CLK TxD/RxD
1: Timer A0 overflow
Timer A0
2. Auto clear function select bit of transmt enable bit (Bit 5 of the UART2 special mode register)
CLK TxD/RxD Bus collision detect interrupt request bit Transmit enable bit
3. Transmit start condition select bit (Bit 6 of the UART2 special mode register)
0: In normal state
CLK TxD
Enabling transmission With "1: falling edge of RxD2" selected
CLK TxD RxD
Figure 1.19.28. Some other functions added
143
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register 2 UART2 Special Mode Register 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 special mode register 2 (address 037616) is used to further control UART2 in I2C mode. Figure 1.19.29 shows the UART2 special mode register 2.
UART2 special mode register 2
b7 b6 b5 b4 b3 b2 b1 b0
Symbol U2SMR2
Address 037616
When reset 0016
Bit symbol IICM2 CSC SWC ASL STAC SWC2 SDHI SHTC
Bit name I 2C mode selection bit 2 Clock-synchronous bit SCL wait output bit SDA output stop bit UART2 initialization bit SCL wait output bit 2 SDA output disable bit Start/stop condition control bit
Function Refer to Table 1.19.10 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0: UART2 clock 1: 0 output 0: Enabled 1: Disabled (high impedance) Set this bit to "1" in I2C mode (refer to Table 1.19.11)
RW
Figure 1.19.29. UART2 special mode register 2
144
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bit 0 of the UART2 special mode register 2 (address 037616) is used as the I2C mode selection bit 2. Table 1.19.10 shows the types of control to be changed by I2C mode selection bit 2 when the I2C mode selection bit is set to "1". Table 1.19.11 shows the timing characteristics of detecting the start condition and the stop condition. Set the start/stop condition control bit (bit 7 of UART2 special mode register 2) to "1" in I2C mode.
Table 1.19.10. Functions changed by I2C mode selection bit 2
Function 1 Factor of interrupt number 15 2 Factor of interrupt number 16 IICM2 = 0 No acknowledgment detection (NACK) Acknowledgment detection (ACK) IICM2 = 1 UART2 transmission (the rising edge of the final bit of the clock) UART2 reception (the falling edge of the final bit of the clock) UART2 reception (the falling edge of the final bit of the clock) The falling edge of the final bit of the reception clock The falling edge of the final bit of the reception clock
3 DMA1 factor at the time when 1 1 0 1 Acknowledgment detection (ACK) is assigned to the DMA request factor selection bits 4 Timing for transferring data from the UART2 reception shift register to the reception buffer. 5 Timing for generating a UART2 reception/ACK interrupt request The rising edge of the final bit of the reception clock The rising edge of the final bit of the reception clock
Table 1.19.11. Timing characteristics of detecting the start condition and the stop condition (Note1)
3 to 6 cycles < duration for setting-up (Note2) 3 to 6 cycles < duration for holding (Note2) Note 1 : When the start/stop condition count bit is "1" . Note 2 : "cycles" is in terms of the input oscillation frequency f(XIN) of the main clock. Duration for setting up
SCL SDA
Duration for holding
(Start condition)
SDA
(Stop condition)
145
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
P70/TXD2/SDA
Timer Selector
UART2
To DMA0, DMA1 IICM=0 or IICM2=1
delay
I/0
IICM=1 Transmission register UART2 IICM=0 SDHI ALS
D Q T
UART2 transmission/ NACK interrupt request
IICM=1 and IICM2=0 To DMA0 IICM=0 or IICM2=1
Arbitration
IICM=1 Reception register IICM=0 UART2 IICM=1 and IICM2=0
Noize Filter
UART2 reception/ACK interrupt request DMA1 request
Start condition detection
S R Q
Bus busy
NACK
Stop condition detection
Falling edge detection P71/RXD2/SCL I/0
L-synchronous output enabling bit
D T Q
D R
Q T
Data register Selector
UART2 IICM=1
Noize Filter Noize Filter
ACK IICM=1
9th pulse
Internal clock Bus collision SWC2 CLK detection External clock control UART2
R S
Bus collision/start, stop condition detection interrupt request
IICM=1
IICM=0
IICM=0
Falling of 9th pulse SWC
P72/CLK2
UART2 IICM=0
Port reading * With IICM set to 1, the port terminal is to be readable even if 1 is assigned to P71 of the direction register. I/0 Timer
Selector
Figure 1.19.30. Functional block diagram for I2C mode
Functions available in I2C mode are shown in Figure 1.19.30 -- a functional block diagram. Bit 3 of the UART2 special mode register 2 (address 037616) is used as the SDA output stop bit. Setting this bit to "1" causes an arbitration loss to occur, and the SDA pin turns to high-impedance state the instant when the arbitration loss detection flag is set to "1". Bit 1 of the UART2 special mode register 2 (address 037616) is used as the clock synchronization bit. With this bit set to "1" at the time when the internal SCL is set to "H", the internal SCL turns to "L" if the falling edge is found in the SCL pin; and the baud rate generator reloads the set value, and start counting within the "L" interval. When the internal SCL changes from "L" to "H" with the SCL pin set to "L", stops counting the baud rate generator, and starts counting it again when the SCL pin turns to "H". Due to this function, the UART2 transmission-reception clock becomes the logical product of the signal flowing through the internal SCL and that flowing through the SCL pin. This function operates over the period from the moment earlier by a half cycle than falling edge of the UART2 first clock to the rising edge of the ninth bit. To use this function, choose the internal clock for the transfer clock. Bit 2 of the UART2 special mode register 2 (037616) is used as the SCL wait output bit. Setting this bit to "1" causes the SCL pin to be fixed to "L" at the falling edge of the ninth bit of the clock. Setting this bit to "0" frees the output fixed to "L".
146
Mitsubishi microcomputers
M16C / 62 Group
UART2 Special Mode Register 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bit 4 of the UART2 special mode register 2 (address 037616) is used as the UART2 initialization bit. Setting this bit to "1", and when the start condition is detected, the microcomputer operates as follows. (1) The transmission shift register is initialized, and the content of the transmission register is transferred to the transmission shift register. This starts transmission by dealing with the clock entered next as the first bit. The UART2 output value, however, doesn't change until the first bit data is output after the entrance of the clock, and remains unchanged from the value at the moment when the microcomputer detected the start condition. (2) The reception shift register is initialized, and the microcomputer starts reception by dealing with the clock entered next as the first bit. (3) The SCL wait output bit turns to "1". This turns the SCL pin to "L" at the falling edge of the ninth bit of the clock. Starting to transmit/receive signals to/from UART2 using this function doesn't change the value of the transmission buffer empty flag. To use this function, choose the external clock for the transfer clock. Bit 5 of the UART2 special mode register 2 (037616) is used as the SCL pin wait output bit 2. Setting this bit to "1" with the serial I/O specified allows the user to forcibly output an "L" from the SCL pin even if UART2 is in operation. Setting this bit to "0" frees the "L" output from the SCL pin, and the UART2 clock is input/output. Bit 6 of the UART2 special mode register 2 (037616) is used as the SDA output disable bit. Setting this bit to "1" forces the SDA pin to turn to the high-impedance state. Refrain from changing the value of this bit at the rising edge of the UART2 transfer clock. There can be instances in which arbitration lost detection flag is turned on.
147
Mitsubishi microcomputers
M16C / 62 Group
S I/O3, 4 S I/O3, 4
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
S I/O3 and S I/O4 are exclusive clock-synchronous serial I/Os. Figure 1.19.31 shows the S I/O3, 4 block diagram, and Figure 1.19.32 shows the S I/O3, 4 control register. Table 1.19.12 shows the specifications of S I/O3, 4.
f1 f8 f32
SMi1 SMi0
Data bus
Synchronous circuit SMi3 SMi6 SMi6
1/2
1/(ni+1)
Transfer rate register (8) S I/O counter i (3)
P90/CLK3 (P95/CLK4)
SMi2 SMi3
S I/Oi interrupt request
P92/SOUT3 (P96/SOUT4) P91/SIN3 (P97/SIN4)
SMi5 LSB
MSB
S I/Oi transmission/reception register (8) 8
Note: i = 3, 4. ni = A value set in the S I/O transfer rate register i (036316, 036716).
Figure 1.19.31. S I/O3, 4 block diagram
148
Mitsubishi microcomputers
M16C / 62 Group
S I/O3, 4
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
S I/Oi control register (i = 3, 4) (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol SiC Bit symbol
SMi0 SMi1 SMi2 SMi3
Address 036216, 036616 Bit name
When reset 4016 Description
b1 b0
RW
Internal synchronous clock select bit
0 0 : Selecting f1 0 1 : Selecting f8 1 0 : Selecting f32 1 1 : Not to be used 0 : SOUTi output 1 : SOUTi output disable(high impedance) 0 : Input-output port 1 : SOUTi output, CLK function
SOUTi output disable bit S I/Oi port select bit (Note 2)
Nothing is assigned. In an attempt to write to this bit, write "0". The value, if read, turns out to be "0".
SMi5 SMi6 SMi7
Transfer direction select bit Synchronous clock select bit (Note 2) SOUTi initial value set bit
0 : LSB first 1 : MSB first 0 : External clock 1 : Internal clock
Effective when SMi3 = 0 0 : L output 1 : H output Note 1: Set "1" in bit 2 of the protection register (000A16) in advance to write to the S I/Oi control register (i = 3, 4). Note 2: When using the port as an input/output port by setting the SI/Oi port select bit (i = 3, 4) to "0", be sure to set the sync clock select bit to "1".
SI/Oi bit rate generator
b7 b0
Symbol S3BRG S4BRG
Address 036316 036716
When reset Indeterminate Indeterminate Values that can be set 0016 to FF16 RW
Indeterminate Assuming that set value = n, BRGi divides the count source by n + 1
SI/Oi transmit/receive register
b7 b0
Symbol S3TRR S4TRR
Address 036016 036416 Indeterminate
When reset Indeterminate Indeterminate RW
Transmission/reception starts by writing data to this register. After transmission/reception finishes, reception data is input.
Figure 1.19.32. S I/O3, 4 related register
149
Mitsubishi microcomputers
M16C / 62 Group
S I/O3, 4
Table 1.19.12. Specifications of S I/O3, 4 Item Transfer data format Transfer clock
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Conditions for transmission/ reception start
Specifications * Transfer data length: 8 bits * With the internal clock selected (bit 6 of 036216, 036616 = "1"): f1/2(ni+1), f8/2(ni+1), f32/2(ni+1) (Note 1) * With the external clock selected (bit 6 of 036216, 036616 = 0):Input from the CLKi terminal (Note 2) * To start transmit/reception, the following requirements must be met: - Select the synchronous clock (use bit 6 of 036216, 036616). Select a frequency dividing ratio if the internal clock has been selected (use bits 0 and 1 of 036216, 036616). - SOUTi initial value set bit (use bit 7 of 036216, 036616)= 1. - S I/Oi port select bit (bit 3 of 036216, 036616) = 1. - Select the transfer direction (use bit 5 of 036216, 036616) -Write transfer data to SI/Oi transmit/receive register (036016, 036416) * To use S I/Oi interrupts, the following requirements must be met: - Clear the SI/Oi interrupt request bit before writing transfer data to the SI/Oi transmit/receive register (bit 3 of 004916, 004816) = 0. * Rising edge of the last transfer clock. (Note 3) * LSB first or MSB first selection Whether transmission/reception begins with bit 0 (LSB) or bit 7 (MSB) can be selected. * Function for setting an SOUTi initial value selection When using an external clock for the transfer clock, the user can choose the SOUTi pin output level during a non-transfer time. For details on how to set, see Figure 1.19.33. * Unlike UART0-2, SI/Oi (i = 3, 4) is not divided for transfer register and buffer. Therefore, do not write the next transfer data to the SI/Oi transmit/receive register (addresses 036016, 036416) during a transfer. When the internal clock is selected for the transfer clock, SOUTi holds the last data for a 1/2 transfer clock period after it finished transferring and then goes to a high-impedance state. However, if the transfer data is written to the SI/Oi transmit/receive register (addresses 036016, 036416) during this time, SOUTi is placed in the high-impedance state immediately upon writing and the data hold time is thereby reduced.
Interrupt request generation timing Select function
Precaution
Note 1: n is a value from 0016 through FF16 set in the S I/Oi transfer rate register (i = 3, 4). Note 2: With the external clock selected: * Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the high state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTi initial value set bit), make sure the CLKi pin input is held high. * The S I/Oi circuit keeps on with the shift operation as long as the synchronous clock is entered in it, so stop the synchronous clock at the instant when it counts to eight. The internal clock, if selected, automatically stops. Note 3: If the internal clock is used for the synchronous clock, the transfer clock signal stops at the "H" state.
150
Mitsubishi microcomputers
M16C / 62 Group
S I/O3, 4
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Functions for setting an SOUTi initial value When using an external clock for the transfer clock, the SOUTi pin output level during a non-transfer time can be set to the high or the low state. Figure 1.19.33 shows the timing chart for setting an SOUTi initial value and how to set it.
(Example) With "H" selected for SOUTi:
S I/Oi port select bit SMi3 = 0
Signal written to the S I/Oi transmission/reception register SOUTi's initial value set bit (SMi7)
SOUTi initial value select bit SMi7 = 1 (SOUTi: Internal "H" level)
S I/Oi port select bit (SMi3)
S I/Oi port select bit SMi3 = 0 1 (Port select: Normal port SOUTi)
D0
SOUTi (internal)
SOUTi terminal = "H" output
Port output SOUTi terminal output Initial value = "H" (Note) (i = 3, 4) Setting the SOUTi initial value to H Port selection (normal port SOUTi)
D0
Signal written to the S I/Oi register ="L" "H" "L" (Falling edge)
Note: The set value is output only when the external clock has been selected. When initializing SOUTi, make sure the CLKi pin input is held "H" level. If the internal clock has been selected or if SOUT output disable has been set, this output goes to the high-impedance state.
SOUTi terminal = Outputting stored data in the S I/Oi transmission/ reception register
Figure 1.19.33. Timing chart for setting SOUTi's initial value and how to set it S I/Oi operation timing Figure 1.19.34 shows the S I/Oi operation timing
1.5 cycle (max) SI/Oi internal clock Transfer clock (Note 1) Signal written to the S I/Oi register S I/Oi output SOUTi
(i= 3, 4) "H" "L" "H" "L" "H" "L"
Note2
"H" "L" "H" "L" Hiz
D0
D1
D2
D3
D4
D5
D6
D7
Hiz
S I/Oi input SINi
(i= 3, 4)
SI/Oi interrupt request (i= 3, 4) bit
"1" "0"
Note 1: With the internal clock selected for the transfer clock, the frequency dividing ratio can be selected using bits 0 and 1 of the S I/Oi control register. (i=3,4) (No frequency division, 8-division frequency, 32-division frequency.) Note 2: With the internal clock selected for the transfer clock, the SOUTi (i = 3, 4) pin becomes to the high-impedance state after the transfer finishes. Note 3: Shown above is the case where the SOUTi (i = 3, 4) port select bit ="1".
Figure 1.19.34. S I/Oi operation timing chart
151
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter A-D Converter
The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF. The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision, the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low 8 bits are stored in the even addresses. Table 1.20.1 shows the performance of the A-D converter. Figure 1.20.1 shows the block diagram of the A-D converter, and Figures 1.20.2 and 1.20.3 show the A-D converter-related registers. Table 1.20.1. Performance of A-D converter Item Performance Method of A-D conversion Successive approximation (capacitive coupling amplifier) Analog input voltage (Note 1) 0V to AVCC (VCC) Operating clock AD (Note 2) VCC = 5V fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN) VCC = 3V divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN) Resolution 8-bit or 10-bit (selectable) Absolute precision VCC = 5V * Without sample and hold function 3LSB * With sample and hold function (8-bit resolution) 2LSB * With sample and hold function (10-bit resolution) AN0 to AN7 input : 3LSB ANEX0 and ANEX1 input (including mode in which external operation amp is connected) : 7LSB VCC = 3V * Without sample and hold function (8-bit resolution) 2LSB Operating modes One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0, and repeat sweep mode 1 Analog input pins 8pins (AN0 to AN7) + 2pins (ANEX0 and ANEX1) A-D conversion start condition * Software trigger A-D conversion starts when the A-D conversion start flag changes to "1" * External trigger (can be retriggered) A-D conversion starts when the A-D conversion start flag is "1" and the ___________ ADTRG/P97 input changes from "H" to "L" Conversion speed per pin * Without sample and hold function 8-bit resolution: 49 AD cycles, 10-bit resolution: 59 AD cycles * With sample and hold function 8-bit resolution: 28 AD cycles, 10-bit resolution: 33 AD cycles Note 1: Does not depend on use of sample and hold function. Note 2: Divide the frequency if f(XIN) exceeds 10MHZ, and make AD frequency equal to 10MHZ. Without sample and hold function, set the AD frequency to 250kHZ min. With the sample and hold function, set the AD frequency to 1MHZ min.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
152
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CKS1=1
fAD 1/2 1/2
CKS0=1 CKS1=0
AD
A-D conversion rate selection
CKS0=0
VREF
VCUT=0
Resistor ladder
AVSS
VCUT=1
Successive conversion register A-D control register 1 (address 03D716)
A-D control register 0 (address 03D616)
Addresses
(03C116, 03C016) (03C316, 03C216) (03C516, 03C416) (03C716, 03C616) (03C916, 03C816) (03CB16, 03CA16) (03CD16, 03CC16) (03CF16, 03CE16)
A-D register 0(16) A-D register 1(16) A-D register 2(16) A-D register 3(16) A-D register 4(16) A-D register 5(16) A-D register 6(16) A-D register 7(16) VIN Comparator Vref Decoder
Data bus high-order Data bus low-order
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7
CH2,CH1,CH0=000 CH2,CH1,CH0=001 CH2,CH1,CH0=010 CH2,CH1,CH0=011 CH2,CH1,CH0=100 CH2,CH1,CH0=101 CH2,CH1,CH0=110 CH2,CH1,CH0=111
OPA1, OPA0
OPA1,OPA0=0,0
OPA1,OPA0=1,1 OPA0=1
0 0 1 1
0 : Normal operation 1 : ANEX0 0 : ANEX1 1 : External op-amp mode
ANEX0
OPA1,OPA0=0,1
ANEX1
OPA1=1
Figure 1.20.1. Block diagram of A-D converter
153
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D control register 0 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol ADCON0 Bit symbol
CH0
Address 03D616 Bit name
When reset 00000XXX2 Function
b2 b1 b0
RW
Analog input pin select bit
CH1
CH2 MD0 MD1 TRG ADST CKS0 Trigger select bit A-D conversion start flag Frequency select bit 0 A-D operation mode select bit 0
0 0 0 : AN0 is selected 0 0 1 : AN1 is selected 0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected 1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected
b4 b3
(Note 2)
0 0 : One-shot mode 0 1 : Repeat mode 1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 Repeat sweep mode 1 0 : Software trigger 1 : ADTRG trigger 0 : A-D conversion disabled 1 : A-D conversion started 0 : fAD/4 is selected 1 : fAD/2 is selected
(Note 2)
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: When changing A-D operation mode, set analog input pin again.
A-D control register 1 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol ADCON1 Bit symbol
SCAN0
Address 03D716 Bit name
When reset 0016 Function
When single sweep and repeat sweep mode 0 are selected
b1 b0
RW
A-D sweep pin select bit
0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) SCAN1 When repeat sweep mode 1 is selected
b1 b0
0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) MD2 A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 Vref connect bit External op-amp connection mode bit 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 0 : Vref not connected 1 : Vref connected
b7 b6
BITS CKS1 VCUT OPA0 OPA1
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
Figure 1.20.2. A-D converter-related registers (1)
154
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D control register 2 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
ADCON2
Address
03D416
When reset
0000XXX02
000
Bit symbol
SMP Reserved bit
Bit name
A-D conversion method select bit
Function
0 : Without sample and hold 1 : With sample and hold Always set to "0"
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0". Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
A-D register i
(b15) b7 (b8) b0 b7
Symbol
ADi(i=0 to 7)
Address When reset 03C016 to 03CF16 Indeterminate
b0
Function
Eight low-order bits of A-D conversion result * During 10-bit mode Two high-order bits of A-D conversion result * During 8-bit mode When read, the content is indeterminate Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
RW
Figure 1.20.3. A-D converter-related registers (2)
155
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (1) One-shot mode
In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.20.2 shows the specifications of one-shot mode. Figure 1.20.4 shows the A-D control register in one-shot mode. Table 1.20.2. One-shot mode specifications Item Function Start condition Stop condition Specification The pin selected by the analog input pin select bit is used for one A-D conversion Writing "1" to A-D conversion start flag * End of A-D conversion (A-D conversion start flag changes to "0", except when external trigger is selected) * Writing "0" to A-D conversion start flag End of A-D conversion One of AN0 to AN7, as selected Read A-D register corresponding to selected pin
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt request generation timing Input pin Reading of result of A-D converter
A-D control register 0 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
00
Symbol ADCON0 Bit symbol
CH0
Address 03D616 Bit name
When reset 00000XXX2 Function
b2 b1 b0
RW
Analog input pin select bit
CH1 CH2 MD0 MD1 TRG ADST CKS0 A-D operation mode select bit 0 Trigger select bit
0 0 0 : AN0 is selected 0 0 1 : AN1 is selected 0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected 1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected
b4 b3
(Note 2) (Note 2)
0 0 : One-shot mode 0 : Software trigger 1 : ADTRG trigger
A-D conversion start flag 0 : A-D conversion disabled 1 : A-D conversion started Frequency select bit 0 0: fAD/4 is selected 1: fAD/2 is selected
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: When changing A-D operation mode, set analog input pin again.
A-D control register 1 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
1
0
Symbol ADCON1 Bit symbol
SCAN0 SCAN1 MD2 BITS CKS1 VCUT OPA0 OPA1
Address 03D716 Bit name
When reset 0016 Function
Invalid in one-shot mode
RW
A-D sweep pin select bit
A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit1 Vref connect bit External op-amp connection mode bit
0 : Any mode other than repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 1 : Vref connected
b7 b6
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
Figure 1.20.4. A-D conversion register in one-shot mode
156
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (2) Repeat mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 1.20.3 shows the specifications of repeat mode. Figure 1.20.5 shows the A-D control register in repeat mode. Table 1.20.3. Repeat mode specifications Item Function Star condition Stop condition Interrupt request generation timing Input pin Reading of result of A-D converter Specification The pin selected by the analog input pin select bit is used for repeated A-D conversion Writing "1" to A-D conversion start flag Writing "0" to A-D conversion start flag None generated One of AN0 to AN7, as selected Read A-D register corresponding to selected pin
A-D control register 0 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
01
Symbol ADCON0 Bit symbol
CH0 CH1
Address 03D616 Bit name
When reset 00000XXX2 Function
b2 b1 b0
RW
Analog input pin select bit
CH2 MD0 MD1 TRG ADST CKS0 A-D operation mode select bit 0 Trigger select bit A-D conversion start flag Frequency select bit 0
0 0 0 : AN0 is selected 0 0 1 : AN1 is selected 0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected 1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected
b4 b3
(Note 2) (Note 2)
0 1 : Repeat mode 0 : Software trigger 1 : ADTRG trigger 0 : A-D conversion disabled 1 : A-D conversion started 0 : fAD/4 is selected 1 : fAD/2 is selected
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: When changing A-D operation mode, set analog input pin again.
A-D control register 1 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
1
0
Symbol ADCON1 Bit symbol
SCAN0 SCAN1 MD2 BITS CKS1 VCUT OPA0 OPA1
Address 03D716 Bit name
When reset 0016 Function
Invalid in repeat mode RW
A-D sweep pin select bit
A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 Vref connect bit External op-amp connection mode bit
0 : Any mode other than repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 1 : Vref connected
b7 b6
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
Figure 1.20.5. A-D conversion register in repeat mode
157
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (3) Single sweep mode
In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D conversion. Table 1.20.4 shows the specifications of single sweep mode. Figure 1.20.6 shows the A-D control register in single sweep mode. Table 1.20.4. Single sweep mode specifications Item Specification Function The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion Start condition Writing "1" to A-D converter start flag Stop condition * End of A-D conversion (A-D conversion start flag changes to "0", except when external trigger is selected) * Writing "0" to A-D conversion start flag Interrupt request generation timing End of A-D conversion Input pin AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins) Reading of result of A-D converter Read A-D register corresponding to selected pin
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D control register 0 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
10
Symbol ADCON0 Bit symbol
CH0 CH1 CH2 MD0 MD1 TRG ADST CKS0
Address 03D616 Bit name
When reset 00000XXX2 Function
Invalid in single sweep mode
RW
Analog input pin select bit
A-D operation mode select bit 0 Trigger select bit A-D conversion start flag Frequency select bit 0
b4 b3
1 0 : Single sweep mode
0 : Software trigger 1 : ADTRG trigger 0 : A-D conversion disabled 1 : A-D conversion started 0 : fAD/4 is selected 1 : fAD/2 is selected
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
A-D control register 1 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
1
0
Symbol ADCON1 Bit symbol
SCAN0
Address 03D716 Bit name
When reset 0016 Function
When single sweep and repeat sweep mode 0 are selected
b1 b0
RW
A-D sweep pin select bit
SCAN1 A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 Vref connect bit External op-amp connection mode bit (Note 2)
0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) 0 : Any mode other than repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 1 : Vref connected
b7 b6
MD2 BITS CKS1 VCUT OPA0 OPA1
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: Neither `01' nor `10' can be selected with the external op-amp connection mode bit.
Figure 1.20.6. A-D conversion register in single sweep mode
158
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (4) Repeat sweep mode 0
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep A-D conversion. Table 1.20.5 shows the specifications of repeat sweep mode 0. Figure 1.20.7 shows the A-D control register in repeat sweep mode 0. Table 1.20.5. Repeat sweep mode 0 specifications Item Function Start condition Stop condition Interrupt request generation timing Input pin Reading of result of A-D converter Specification The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion Writing "1" to A-D conversion start flag Writing "0" to A-D conversion start flag None generated AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins) Read A-D register corresponding to selected pin (at any time)
A-D control register 0 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
11
Symbol ADCON0 Bit symbol
CH0 CH1 CH2 MD0 MD1 TRG ADST CKS0
Address 03D616 Bit name
When reset 00000XXX2 Function
Invalid in repeat sweep mode 0
RW
Analog input pin select bit
A-D operation mode select bit 0 Trigger select bit A-D conversion start flag Frequency select bit 0
b4 b3
1 1 : Repeat sweep mode 0
0 : Software trigger 1 : ADTRG trigger 0 : A-D conversion disabled 1 : A-D conversion started 0 : fAD/4 is selected 1 : fAD/2 is selected
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
A-D control register 1 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
1
0
Symbol ADCON1 Bit symbol
SCAN0
Address 03D716 Bit name
When reset 0016 Function
When single sweep and repeat sweep mode 0 are selected
b1 b0
RW
A-D sweep pin select bit
SCAN1 A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 Vref connect bit External op-amp connection mode bit (Note 2)
0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) 0 : Any mode other than repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 1 : Vref connected
b7 b6
MD2 BITS CKS1 VCUT OPA0 OPA1
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: Neither "01" nor "10" can be selected with the external op-amp connection mode bit.
Figure 1.20.7. A-D conversion register in repeat sweep mode 0
159
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (5) Repeat sweep mode 1
In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected using the A-D sweep pin select bit. Table 1.20.6 shows the specifications of repeat sweep mode 1. Figure 1.20.8 shows the A-D control register in repeat sweep mode 1. Table 1.20.6. Repeat sweep mode 1 specifications Item Function Specification All pins perform repeat sweep A-D conversion, with emphasis on the pin or pins selected by the A-D sweep pin select bit Example : AN0 selected AN0 AN1 AN0 AN2 AN0 AN3, etc Writing "1" to A-D conversion start flag Writing "0" to A-D conversion start flag None generated AN0 (1 pin), AN0 and AN1 (2 pins), AN0 to AN2 (3 pins), AN0 to AN3 (4 pins) Read A-D register corresponding to selected pin (at any time)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Start condition Stop condition Interrupt request generation timing Input pin Reading of result of A-D converter
A-D control register 0 (Note)
b7 b6 b5 b4 b3 b2 b1 b0
11
Symbol ADCON0 Bit symbol
CH0 CH1 CH2 MD0 MD1 TRG ADST CKS0
Address 03D616 Bit name
When reset 00000XXX2 Function
Invalid in repeat sweep mode 1
RW
Analog input pin select bit
A-D operation mode select bit 0 Trigger select bit A-D conversion start flag Frequency select bit 0
b4 b3
1 1 : Repeat sweep mode 1
0 : Software trigger 1 : ADTRG trigger 0 : A-D conversion disabled 1 : A-D conversion started 0 : fAD/4 is selected 1 : fAD/2 is selected
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
A-D control register 1 (Note 1)
b7 b6 b5 b4 b3 b2 b1 b0
1
1
Symbol ADCON1 Bit symbol
SCAN0
Address 03D716 Bit name
When reset 0016 Function
When repeat sweep mode 1 is selected
b1 b0
RW
A-D sweep pin select bit
SCAN1 A-D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 Vref connect bit External op-amp connection mode bit (Note 2)
0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode 0 : fAD/2 or fAD/4 is selected 1 : fAD is selected 1 : Vref connected
b7 b6
MD2 BITS CKS1 VCUT OPA0 OPA1
0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted 1 1 : External op-amp connection mode
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: Neither `01' nor `10' can be selected with the external op-amp connection mode bit.
Figure 1.20.8. A-D conversion register in repeat sweep mode 1
160
Mitsubishi microcomputers
M16C / 62 Group
A-D Converter (a) Sample and hold
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to "1". When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 fAD cycle is achieved with 8-bit resolution and 33 fAD with 10-bit resolution. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and hold is to be used.
(b) Extended analog input pins
In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can also be converted from analog to digital. When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "0", input via ANEX0 is converted from analog to digital. The result of conversion is stored in A-D register 0. When bit 6 of the A-D control register 1 (address 03D716) is "0" and bit 7 is "1", input via ANEX1 is converted from analog to digital. The result of conversion is stored in A-D register 1.
(c) External operation amp connection mode
In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can be amplified together by just one operation amp and used as the input for A-D conversion. When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "1", input via AN0 to AN7 is output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.20.9 is an example of how to connect the pins in external operation amp mode.
Resistor ladder
Successive conversion register
Analog input
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7
ANEX0
ANEX1
Comparator External op-amp
Figure 1.20.9. Example of external op-amp connection mode
161
Mitsubishi microcomputers
M16C / 62 Group
D-A Converter D-A Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type. D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the target port to output mode if D-A conversion is to be performed. Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register. V = VREF X n/ 256 (n = 0 to 255) VREF : reference voltage Table 1.21.1 lists the performance of the D-A converter. Figure 1.21.1 shows the block diagram of the D-A converter. Figure 1.21.2 shows the D-A control register. Figure 1.21.3 shows the D-A converter equivalent circuit. Table 1.21.1. Performance of D-A converter Item Conversion method Resolution Analog output pin Performance R-2R method 8 bits 2 channels
Data bus low-order bits
D-A register0 (8)
(Address 03D816) D-A0 output enable bit
R-2R resistor ladder
P93/DA0
D-A register1 (8)
(Address 03DA16) D-A1 output enable bit
R-2R resistor ladder
P94/DA1
Figure 1.21.1. Block diagram of D-A converter
162
Mitsubishi microcomputers
M16C / 62 Group
D-A Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
D-A control register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol DACON Bit symbol
DA0E DA1E
Address 03DC16 Bit name
D-A0 output enable bit D-A1 output enable bit
When reset 0016 Function
0 : Output disabled 1 : Output enabled 0 : Output disabled 1 : Output enabled
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0"
D-A register
b7 b0
Symbol DAi (i = 0,1)
Address 03D816, 03DA16
When reset Indeterminate
Function
Output value of D-A conversion
RW RW
Figure 1.21.2. D-A control register
D-A0 output enable bit "0" DA0 "1" 2R MSB D-A0 register0 2R 2R 2R 2R 2R 2R 2R LSB R R R R R R R 2R
"0"
"1"
AVSS VREF
Note 1: The above diagram shows an instance in which the D-A register is assigned 2A16. Note 2: The same circuit as this is also used for D-A1. Note 3: To reduce the current consumption when the D-A converter is not used, set the D-A output enable bit to 0 and set the D-A register to 0016 so that no current flows in the resistors Rs and 2Rs.
Figure 1.21.3. D-A converter equivalent circuit
163
Mitsubishi microcomputers
M16C / 62 Group
CRC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CRC Calculation Circuit
The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT (X16 + X12 + X5 + 1) to generate CRC code. The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles. Figure 1.22.1 shows the block diagram of the CRC circuit. Figure 1.22.2 shows the CRC-related registers. Figure 1.22.3 shows the calculation example using the CRC calculation circuit
Data bus high-order bits Data bus low-order bits
Eight low-order bits CRC data register (16)
Eight high-order bits
(Addresses 03BD16, 03BC16) CRC code generating circuit x16 + x12 + x5 + 1
CRC input register (8)
(Address 03BE16)
Figure 1.22.1. Block diagram of CRC circuit
CRC data register
(b15) b7 (b8) b0 b7 b0
Symbol CRCD
Address 03BD16, 03BC16
When reset Indeterminate Values that can be set
000016 to FFFF16
Function
CRC calculation result output register
RW
CRC input register
b7 b0
Symbo CRCIN Function
Data input register
Address 03BE16
When reset Indeterminate Values that can be set
0016 to FF16
RW
Figure 1.22.2. CRC-related registers
164
Mitsubishi microcomputers
M16C / 62 Group
CRC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
b15
b0
(1) Setting 000016
CRC data register CRCD [03BD16, 03BC16]
b7
b0
(2) Setting 0116
CRC input register
CRCIN [03BE16]
2 cycles After CRC calculation is complete
b15 b0
118916
CRC data register
CRCD [03BD16, 03BC16]
Stores CRC code The code resulting from sending 0116 in LSB first mode is (1000 0000). Thus the CRC code in the generating polynomial, (X16 + X12 + X5 + 1), becomes the remainder resulting from dividing (1000 0000) X16 by (1 0001 0000 0010 0001) in conformity with the modulo-2 operation. LSB 1000 1000 1 0001 0000 0010 0001 1000 0000 0000 1000 1000 0001 1000 0001 1000 1000 1001 LSB 8 1 0000 0000 0000 0001 0001 1 0000 1 1000 0000 1000 0000 0 1 1000 MSB MSB Modulo-2 operation is operation that complies with the law given below. 0+0=0 0+1=1 1+0=1 1+1=0 -1 = 1
9
Thus the CRC code becomes (1001 0001 1000 1000). Since the operation is in LSB first mode, the (1001 0001 1000 1000) corresponds to 118916 in hexadecimal notation. If the CRC operation in MSB first mode is necessary in the CRC operation circuit built in the M16C, switch between the LSB side and the MSB side of the input-holding bits, and carry out the CRC operation. Also switch between the MSB and LSB of the result as stored in CRC data.
b7
b0
(3) Setting 2316
CRC input register
CRCIN [03BE16]
After CRC calculation is complete
b15 b0
0A4116
CRC data register
CRCD [03BD16, 03BC16]
Stores CRC code
Figure 1.22.3. Calculation example using the CRC calculation circuit
165
Mitsubishi microcomputers
M16C / 62 Group Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Programmable I/O Ports
There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance. Figures 1.23.1 to 1.23.4 show the programmable I/O ports. Figure 1.23.5 shows the I/O pins. Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices. To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), they function as outputs regardless of the contents of the direction registers. When pins are to be used as the outputs for the D-A converter, do not set the direction registers to output mode. See the descriptions of the respective functions for how to set up the built-in peripheral devices.
(1) Direction registers
Figure 1.23.6 shows the direction registers. These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin. Note: There is no direction register bit for P85.
(2) Port registers
Figure 1.23.7 shows the port registers. These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in port registers corresponds one for one to each I/O pin.
(3) Pull-up control registers
Figure 1.23.8 shows the pull-up control registers. The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input. However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P3, P40 to P43, and P5 is invalid.
(4) Port control register
Figure 1.23.9 shows the port control register. The bit 0 of port control resister is used to read port P1 as follows: 0 : When port P1 is input port, port input level is read. When port P1 is output port , the contents of port P1 register is read. 1 : The contents of port P1 register is read always. This register is valid in the following: * External bus width is 8 bits in microprocessor mode or memory expansion mode. * Port P1 can be used as a port in multiplexed bus for the entire space.
166
Mitsubishi microcomputers
M16C / 62 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection Direction register P00 to P07, P20 to P27, P30 to P37, P40 to P47, P50 to P54, P56 Data bus Port latch (Note)
Pull-up selection P10 to P14 Direction register
Port P1 control register
Data bus
Port latch (Note)
Pull-up selection P15 to P17 Direction register
Port P1 control register
Data bus
Port latch (Note)
Input to respective peripheral functions Pull-up selection P57, P60, P61, P64, P65, P72 to P76, P80, P81, P90, P92 Data bus Direction register
"1"
Output
Port latch (Note)
Input to respective peripheral functions
Note :1
symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each port.
Figure 1.23.1. Programmable I/O ports (1)
167
Mitsubishi microcomputers
M16C / 62 Group Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection P82 to P84 Direction register
Data bus
Port latch (Note1)
Input to respective peripheral functions Pull-up selection Direction register P55, P62, P66, P77, P91, P97 Data bus Port latch (Note1)
Input to respective peripheral functions Pull-up selection P63, P67 Direction register "1" Data bus Port latch Output (Note1)
P85 Data bus NMI interrupt input (Note1)
P70, P71
Direction register "1" Port latch Output (Note2)
Input to respective peripheral functions
Note :1 Note :2
symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each port. symbolizes a parasitic diode.
Figure 1.23.2. Programmable I/O ports (2)
168
Mitsubishi microcomputers
M16C / 62 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
P100 to P103 (inside dotted-line not included) P104 to P107 (inside dotted-line included)
Pull-up selection Direction register
Data bus
Port latch (Note)
Analog input Input to respective peripheral functions
Pull-up selection D-A output enabled P93, P94 Direction register
Data bus
Port latch (Note)
Input to respective peripheral functions Analog output D-A output enabled Pull-up selection Direction register P96 "1" Data bus Port latch Output (Note)
Analog input Pull-up selection Direction register P95 "1" Data bus Port latch Output (Note)
Input to respective peripheral functions Analog input Note : symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each port.
Figure 1.23.3. Programmable I/O ports (3)
169
Mitsubishi microcomputers
M16C / 62 Group Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection Direction register P87
Data bus
Port latch (Note)
fc
Rf
Pull-up selection P86 Direction register "1" Data bus Port latch Output (Note)
Rd
Note :
symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each port.
Figure 1.23.4. Programmable I/O ports (4)
BYTE BYTE signal input
(Note2) (Note1)
CNVSS CNVSS signal input
(Note2) (Note1)
RESET RESET signal input (Note1)
Note 1:
symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each pin. Note 2: A parasitic diode on the VCC side is added to the mask ROM version. Do not apply a voltage higher than Vcc to each pin.
Figure 1.23.5. I/O pins
170
Mitsubishi microcomputers
M16C / 62 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port Pi direction register (Note)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PDi (i = 0 to 10, except 8) Bit symbol
PDi_0 PDi_1 PDi_2 PDi_3 PDi_4 PDi_5 PDi_6 PDi_7
Address 03E216, 03E316, 03E616, 03E716, 03EA16 03EB16, 03EE16, 03EF16, 03F316, 03F616 Function
0 : Input mode (Functions as an input port) 1 : Output mode (Functions as an output port) (i = 0 to 10 except 8)
When reset 0016
Bit name
Port Pi0 direction register Port Pi1 direction register Port Pi2 direction register Port Pi3 direction register Port Pi4 direction register Port Pi5 direction register Port Pi6 direction register Port Pi7 direction register
RW
Note: Set bit 2 of protect register (address 000A16) to "1" before rewriting to the port P9 direction register.
Port P8 direction register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
PD8
Address 03F216 Bit name
Port P80 direction register Port P81 direction register Port P82 direction register Port P83 direction register
When reset 00X000002 Function
0 : Input mode (Functions as an input port) 1 : Output mode (Functions as an output port)
Bit symbol
PD8_0 PD8_1 PD8_2 PD8_3
RW
PD8_4 Port P84 direction register Nothing is assigned. In an attempt to write to this bit, write "0". The value, if read, turns out to be indeterminate. PD8_6 PD8_7 Port P86 direction register Port P87 direction register 0 : Input mode (Functions as an input port) 1 : Output mode (Functions as an output port)
Figure 1.23.6. Direction register
171
Mitsubishi microcomputers
M16C / 62 Group Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port Pi register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol Pi (i = 0 to 10, except 8)
Address 03E016, 03E116, 03E416, 03E516, 03E816 03E916, 03EC16, 03ED16, 03F116, 03F416 Function
Data is input and output to and from each pin by reading and writing to and from each corresponding bit 0 : "L" level data 1 : "H" level data (Note) (i = 0 to 10 except 8)
When reset Indeterminate Indeterminate RW
Bit symbol
Pi_0 Pi_1 Pi_2 Pi_3 Pi_4 Pi_5 Pi_6 Pi_7
Bit name
Port Pi0 register Port Pi1 register Port Pi2 register Port Pi3 register Port Pi4 register Port Pi5 register Port Pi6 register Port Pi7 register
Note : Since P70 and P71 are N-channel open drain ports, the data is high-impedance.
Port P8 register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol P8 Bit symbol
P8_0 P8_1 P8_2 P8_3 P8_4 P8_5 P8_6 P8_7
Address 03F016 Bit name
Port P80 register Port P81 register Port P82 register Port P83 register Port P84 register Port P85 register Port P86 register Port P87 register
When reset Indeterminate Function
Data is input and output to and from each pin by reading and writing to and from each corresponding bit (except for P85) 0 : "L" level data 1 : "H" level data
RW
Figure 1.23.7. Port register
172
Mitsubishi microcomputers
M16C / 62 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up control register 0
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PUR0 Bit symbol
PU00 PU01 PU02 PU03 PU04 PU05 PU06 PU07
Address 03FC16 Bit name
P00 to P03 pull-up P04 to P07 pull-up P10 to P13 pull-up P14 to P17 pull-up P20 to P23 pull-up P24 to P27 pull-up P30 to P33 pull-up P34 to P37 pull-up
When reset 0016 Function
The corresponding port is pulled high with a pull-up resistor 0 : Not pulled high 1 : Pulled high
RW
Pull-up control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PUR1 Bit symbol
PU10 PU11 PU12 PU13 PU14 PU15 PU16
Address 03FD16 Bit name
P40 to P43 pull-up P44 to P47 pull-up P50 to P53 pull-up P54 to P57 pull-up P60 to P63 pull-up P64 to P67 pull-up P70 to P73 pull-up (Note 1)
When reset 0016 (Note 2) Function
The corresponding port is pulled high with a pull-up resistor 0 : Not pulled high 1 : Pulled high RW
PU17 P74 to P77 pull-up Note 1: Since P70 and P71 are N-channel open drain ports, pull-up is not available for them. Note 2: When the VCC level is being impressed to the CNVSS terminal, this register becomes to 0216 when reset (PU11 becomes to "1").
Pull-up control register 2
b7 b6 b5 b4 b3 b2 b1 b0
Symbol PUR2 Bit symbol
PU20 PU21 PU22 PU23 PU24 PU25
Address 03FE16 Bit name
P80 to P83 pull-up P84 to P87 pull-up (Except P85) P90 to P93 pull-up P94 to P97 pull-up P100 to P103 pull-up P104 to P107 pull-up
When reset 0016 Function
The corresponding port is pulled high with a pull-up resistor 0 : Not pulled high 1 : Pulled high
RW
Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Figure 1.23.8. Pull-up control register
173
Mitsubishi microcomputers
M16C / 62 Group Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port control register
b7 b6 b5 b4 b3 b2 b1 b0
Symbpl PCR
Address 03FF16
When reset 0016
Bit symbol
PCR0
Bit name
Port P1 control register
Function
0 : When input port, read port input level. When output port, read the contents of port P1 register. 1 : Read the contents of port P1 register though input/output port.
RW
Nothing is assigned.
In an attempt to write to these bits, write "0". The value, if read, turns out to be "0".
Figure 1.23.9. Port control register
174
Mitsubishi microcomputers
M16C / 62 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.23.1. Example connection of unused pins in single-chip mode
Pin name Ports P0 to P10 (excluding P85) XOUT (Note) NMI AVCC AVSS, VREF, BYTE Connection After setting for input mode, connect every pin to VSS or VCC via a resistor; or after setting for output mode, leave these pins open. Open Connect via resistor to VCC (pull-up) Connect to VCC Connect to VSS
Note: With external clock input to XIN pin.
Table 1.23.2. Example connection of unused pins in memory expansion mode and microprocessor mode
Pin name Ports P6 to P10 (excluding P85) P45 / CS1 to P47 / CS3 Connection After setting for input mode, connect every pin to VSS or VCC via a resistor; or after setting for output mode, leave these pins open. Sets ports to input mode, sets bits CS1 through CS3 to 0, and connects to Vcc via resistors (pull-up). Open
BHE, ALE, HLDA, XOUT (Note 1), BCLK (Note 2) HOLD, RDY, NMI AVCC AVSS, VREF
Connect via resistor to VCC (pull-up) Connect to VCC Connect to VSS
Note 1: With external clock input to XIN pin. Note 2: When the BCLK output disable bit (bit 7 at address 000416) is set to "1", connect to VCC via a resistor (pull-up).
Microcomputer
Port P0 to P10 (except for P85) (Input mode) * * * (Input mode) (Output mode)
* * *
Microcomputer
Port P6 to P10 (except for P85) (Input mode) * * * (Input mode) (Output mode)
* * *
Open
Open
NMI XOUT AVCC BYTE AVSS VREF Open VCC
Port P45 / CS1 to P47 / CS3
NMI BHE HLDA ALE XOUT BCLK (Note) HOLD RDY AVCC AVSS VREF
Open VCC
VSS
VSS
In single-chip mode
In memory expansion mode or in microprocessor mode
Note : When the BCLK output disable bit (bit 7 at address 000416) is set to "1", connect to VCC via a resistor (pull-up).
Figure 1.23.10. Example connection of unused pins
175
Mitsubishi microcomputers
M16C / 62 Group
Usage precaution Usage Precaution Timer A (timer mode)
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A (event counter mode)
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value. (2) When stop counting in free run type, set timer again.
Timer A (one-shot timer mode)
(1) Setting the count start flag to "0" while a count is in progress causes as follows: * The counter stops counting and a content of reload register is reloaded. * The TAiOUT pin outputs "L" level. * The interrupt request generated and the timer Ai interrupt request bit goes to "1". (2) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures: * Selecting one-shot timer mode after reset. * Changing operation mode from timer mode to one-shot timer mode. * Changing operation mode from event counter mode to one-shot timer mode. Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.
Timer A (pulse width modulation mode)
(1) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures: * Selecting PWM mode after reset. * Changing operation mode from timer mode to PWM mode. * Changing operation mode from event counter mode to PWM mode. Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made. (2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiOUT pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiOUT pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".
Timer B (timer mode, event counter mode)
(1) Reading the timer Bi register while a count is in progress allows reading , with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.
176
Mitsubishi microcomputers
M16C / 62 Group
Usage precaution
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B (pulse period/pulse width measurement mode)
(1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1". (2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
A-D Converter
(1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs). In particular, when the Vref connection bit is changed from "0" to "1", start A-D conversion after an elapse of 1 s or longer. (2) When changing A-D operation mode, select analog input pin again. (3) Using one-shot mode or single sweep mode Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by AD conversion interrupt request bit.) (4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1 Use the undivided main clock as the internal CPU clock.
Stop Mode and Wait Mode
____________
(1) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized. (2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the every-clock stop bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the every-clock stop bit to "1".
Interrupts
(1) Reading address 0000016 * When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence. The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0". Though the interrupt is generated, the interrupt routine may not be executed. Do not read address 0000016 by software. (2) Setting the stack pointer * The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. _______ When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning _______ the first instruction immediately after reset, generating any interrupts including the NMI interrupt is prohibited. _______ (3) The NMI interrupt _______ _______ * The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused. _______ * Do not get either into stop mode with the NMI pin set to "L".
177
Mitsubishi microcomputers
M16C / 62 Group
Usage precaution
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(4) External interrupt _______ _______ * When the polarity of the INT0 to INT5 pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". (5) Rewrite the interrupt control register * To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:
Example 1:
INT_SWITCH1: FCLR I AND.B #00h, 0055h NOP NOP FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts.
Example 2:
INT_SWITCH2: FCLR I AND.B #00h, 0055h MOV.W MEM, R0 FSET I ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Dummy read. ; Enable interrupts.
Example 3:
INT_SWITCH3: PUSHC FLG FCLR I AND.B #00h, 0055h POPC FLG ; Push Flag register onto stack ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.
* When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register. Instructions : AND, OR, BCLR, BSET
Noise
(1) VPP line of one-time PROM version or EPROM version * VPP (This line is for PROM programming power line) line of internal PROM connected to CNVSS with one-time PROM version or EPROM version. So CNVSS should be a short line for improvement of noise resistance. If CNVSS line is long, you should insert an approximately 5K ohm resistor close to CNVSS pin and connect to VSS or VCC. Note 1: Inserting a 5 K ohm resistor will not cause any problem when switching to mask ROM version. (2) Insert bypass capacitor between VCC and VSS pin for noise and latch up countermeasure. * Insert bypass capacitor (about 0.1 F) and connect short and wide line between VCC and VSS lines.
178
Mitsubishi microcomputers
M16C / 62 Group
Usage precaution External ROM version
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The external ROM version is operated only in microprocessor mode, so be sure to perform the following: * Connect CNVss pin to Vcc. * Fix the processor mode bit to "112"
Built-in PROM version
(1) All built-in PROM versions High voltage is required to program to the built-in PROM. Be careful not to apply excessive voltage. Be especially careful during power-on. (2) One Time PROM version One Time PROM versions shipped in blank (M30620ECFP, M30620ECGP), of which built-in PROMs are programmed by users, are also provided. For these microcomputers, a programming test and screening are not performed in the assembly process and the following processes. Therefore ROM write defectiveness occurs around 5 %. To improve their reliability after programming, we recommend to program and test as flow shown in Figure 1.24.1 before use.
Programming with PROM programmer
Screening (Note) (Leave at 150C for 40 hours)
Verify test PROM programmer
Function check in target device
Note: Never expose to 150C exceeding 100 hours.
Figure 1.24.1. Programming and test flow for One Time PROM version
(3) EPROM version * Cover the transparent glass window with a shield or others during the read mode because exposing to sun light or fluorescent lamp can cause erasing the information. A shield to cover the transparent window is available from Mitsubishi Electric Corp. Be careful that the shield does not touch the EPROM lead pins. * Clean the transparent glass before erasing. Fingers' flat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability. * The EPROM version is a tool only for program development (for evaluation), and do not use it for the mass product run.
179
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Items to be submitted when ordering masked ROM version
Please submit the following when ordering masked ROM products: (1) Mask ROM confirmation form (2) Mark specification sheet (3) ROM data : EPROMs or floppy disks *: In the case of EPROMs, there sets of EPROMs are required per pattern. *: In the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern.
180
Mitsubishi microcomputers
M16C / 62 Group Electrical characteristics
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.26.1. Absolute maximum ratings
Symbol
Vcc AVcc Supply voltage Analog supply voltage RESET, (maskROM : CNVSS, BYTE), Input P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, VREF, XIN P70, P71,(EPROM : CNVSS, BYTE) Output P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37,P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107, XOUT P70, P71, Power dissipation Ta=25 C
Parameter
Condition
VCC=AVCC VCC=AVCC
Rated value
-0.3 to 6.5 -0.3 to 6.5
Unit
V V
VI
-0.3 to Vcc+0.3
V
-0.3 to 6.5(Note 1)
V
VO
-0.3 to Vcc+0.3
V
-0.3 to 6.5 300 -20 to 85 / -40 to 85(Note 2) -65 to 150
V mW C C
Operating ambient temperature Storage temperature Note 1: When writing to EPROM ,only CNVss is -0.3 to 13 (V) .
Pd Topr Tstg
Note 2: Specify a product of -40 to 85C to use it.
181
Mitsubishi microcomputers
M16C / 62 Group
Electrical characteristics
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.26.2. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Ta = - 20oC to 85oC / - 40oC to 85oC(Note3) unless otherwise specified) Standard Symbol Unit Parameter Typ. Min Max.
Vcc AVcc Vss AVss
Supply voltage Analog supply voltage Supply voltage Analog supply voltage
HIGH input P31 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, voltage XIN, RESET, CNVSS, BYTE P70 , P71 P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode) P00 to P07, P10 to P17, P20 to P27, P30
(data input function during memory expansion and microprocessor modes)
2.7
5.0 Vcc 0 0
5.5
V V V V V V V V V V V mA
VIH
0.8Vcc 0.8Vcc 0.8Vcc 0.5Vcc 0 0 0
Vcc 6.5 Vcc Vcc 0.2Vcc 0.2Vcc 0.16Vcc -10.0
VIL
LOW input P31 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P107, voltage XIN, RESET, CNVSS, BYTE P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode) P00 to P07, P10 to P17, P20 to P27, P30
(data input function during memory expansion and microprocessor modes)
I OH (peak)
I OH (avg)
I OL (peak) I OL (avg)
HIGH peak output P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P72 to P77, current P80 to P84,P86,P87,P90 to P97,P100 to P107 HIGH average output P00 to P07, P10 to P17, P20 to P27,P30 to P37, current P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107 P00 to P07, P10 to P17, P20 to P27,P30 to P37, LOW peak output P40 to P47, P50 to P57, P60 to P67,P70 to P77, current P80 to P84,P86,P87,P90 to P97,P100 to P107 P00 to P07, P10 to P17, P20 to P27,P30 to P37, LOW average P40 to P47, P50 to P57, P60 to P67,P70 to P77, output current P80 to P84,P86,P87,P90 to P97,P100 to P107 Vcc=4.5V to 5.5V EPROM version, One time PROM Vcc=2.7V to 4.5V version
-5.0
mA
10.0 5.0 0 0 0 0 0 0 0 0 32.768
mA mA
No wait
f (XIN)
Main clock input oscillation frequency
With wait
Mask ROM version, Vcc=4.2V to 5.5V Flash memory 5V Vcc=2.7V to 4.2V version (Note 5) Vcc=4.5V to 5.5V EPROM version, One time PROM Vcc=2.7V to 4.5V version Mask ROM version, Vcc=4.2V to 5.5V Flash memory 5V Vcc=2.7V to 4.2V version (Note 5)
16 MHz 6.95 X Vcc MHz -15.275 16 MHz 7.33 X Vcc -14.791 16 5X Vcc -6.5 16 4 X Vcc -0.8 50 MHz MHz MHz MHz MHz kHz
f (XcIN)
Subclock oscillation frequency
Note 1: The mean output current is the mean value within 100ms. Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max. Note 3: Specify a product of -40C to 85C to use it. Note 4: Relationship between main clock oscillation frequency and supply voltage.
Main clock input oscillation frequency (EPROM version, One-time PROM version, No wait)
Operating maximum frequency [MHZ]
Main clock input oscillation frequency (Mask ROM version, Flash memory 5V version, No wait)
Operating maximum frequency [MHZ]
Main clock input oscillation frequency (EPROM version, One-time PROM version, With wait)
Operating maximum frequency [MHZ]
Main clock input oscillation frequency (Mask ROM version, Flash memory 5V version, With wait)
Operating maximum frequency [MHZ]
16.0
6.95 X VCC - 15.275MHZ
16.0
7.33 X VCC - 14.791MHZ
16.0
5 X VCC - 6.5MHZ
16.0
4 X VCC - 0.8MHZ
10.0
7.0
5.0
3.5
0.0 2.7
Supply voltage[V]
0.0 2.7 4.2
Supply voltage[V]
0.0 2.7
Supply voltage[V]
0.0 2.7 4.2
Supply voltage[V]
4.5 (BCLK: no division)
5.5
5.5
4.5 (BCLK: no division)
5.5
5.5
(BCLK: no division)
(BCLK: no division)
Note 5: Execute case without wait, program / erase of flash memory by VCC=4.2V to 5.5V and f(BCLK) 6.25 MHz. Execute case with wait, program / erase of flash memory by VCC=4.2V to 5.5V and f(BCLK) 12.5 MHz.
182
Mitsubishi microcomputers
M16C / 62 Group Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Table 1.26.3. Electrical characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC, f(XIN) = 16MHZ unless otherwise specified)
Symbol
VOH
Parameter
Measuring condition
Standard Min Typ. Max.
3 .0
Unit
HIGH output P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37, P40 to P47, P50 to P57, IOH=-5mA P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107 HIGH output P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37, P40 to P47, P50 to P57, IOH=-200A P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107 HIGHPOWER IOH=-1mA HIGH output XOUT voltage LOWPOWER IOH=-0.5mA HIGH output voltage XCOUT
HIGHPOWER LOWPOWER
V
VOH
4 .7
V
3 .0 3 .0 3 .0 1 .6
V V
VOH
With no load applied With no load applied
VOL
LOW output P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107 LOW output P00 to P07, P10 to P17, P20 to P27, voltage P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107 LOW output voltage LOW output voltage Hysteresis XOUT XCOUT
HIGHPOWER LOWPOWER HIGHPOWER LOWPOWER
IOL=5mA
2 .0
V
VOL
IOL=200A IOL=1mA IOL=0.5mA With no load applied With no load applied 0 0
0.45
V
VOL
2 .0 2.0
V V
VT+-VT-
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, ADTRG, CTS0 to CTS2, CLK0 to CLK4,TA2OUT to TA4OUT,NMI, KI0 to KI3, RxD0 to RxD2, SIN3, SIN4 RESET
0 .2
0 .8
V
VT+-VT-
Hysteresis
0.2
1.8
V
IIH
HIGH input P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, current P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P107, XIN, RESET, CNVss, BYTE LOW input current P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P107, XIN, RESET, CNVss, BYTE P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107
VI=5V
5 .0
A
I IL
VI=0V
-5.0
A
RPULLUP
Pull-up resistance
VI=0V
30.0
50.0
167.0
k
RfXIN RfXCIN V
RAM
Feedback resistance XIN Feedback resistance XCIN RAM retention voltage In single-chip mode, the output pins are open and other pins are VSS When clock is stopped
EPROM, f(XIN)=16MHz One-time PROM, mask ROM versions Square wave, no division Flash memory 5V version
1 .0 6 .0 2 .0 30.0 35.0 90.0 90.0 8.0 50.0 50.0
M M V mA mA A A mA
f(XIN)=16MHz
Square wave, no division
EPROM, f(XCIN)=32kHz One-time PROM, mask ROM versions Square wave
Icc
Power supply current
Flash memory 5V version Flash memory 5V version
f(XCIN)=32kHz
Square wave, in RAM
f(XCIN)=32kHz
Square wave, in flash memory
f(XCIN)=32kHz
When a WAIT instruction is executed (Note)
4.0
A
Ta=25C when clock is stopped Ta=85C when clock is stopped
1.0 A 20.0
Note : With one timer operated using fC32.
183
Mitsubishi microcomputers
M16C / 62 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Table 1.26.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, Vss = AVSS = 0V at Ta = 25oC, f(XIN) = 16MHZ unless otherwise specified)
Symbol Resolution
Absolute Sample & hold function not available accuracy
Sample & hold function available(10bit)
Parameter
Measuring condition
VREF = VCC
VREF = VCC = 5V AN0 to AN7 input VREF =VCC ANEX0, ANEX1 input, = 5V External op-amp connection mode VREF = VCC = 5V
Standard Unit Min. Typ. Max.
10 3 3 7 2 40 Bits LSB LSB LSB LSB
Sample & hold function available(8bit)
RLADDER tCONV tCONV tSAMP VREF VIA
Ladder resistance Conversion time(10bit) Conversion time(8bit) Sampling time Reference voltage Analog input voltage
VREF = VCC
10 3.3 2.8 0.3 2 0
k k s
s s V V
VCC VREF
Note: Divide the frequency if f(XIN) exceeds 10 MHz, and make OAD equal to or lower than 10 MHz.
Table 1.26.5. D-A conversion characteristics (referenced to VCC = 5V, VSS = AVSS = 0V, VREF = 5V at Ta = 25oC, f(XIN) = 16MHZ unless otherwise specified)
Symbol Parameter Resolution Absolute accuracy Setup time Output resistance Reference power supply input current Measuring condition
Min. Standard Typ. Max. 8 1.0 3 20 1.5
Unit
Bits % s k k mA
tsu RO IVREF
4
(Note)
10
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included. Also, when DA register contents are not "00", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register.
184
Mitsubishi microcomputers
M16C / 62 Group Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified) Table 1.26.6. External clock input
Symbol
tc tw(H) tw(L) tr tf
Parameter
External clock input cycle time External clock input HIGH pulse width External clock input LOW pulse width External clock rise time External clock fall time
Standard Min. Max.
62.5 25 25 15 15
Unit
ns ns ns ns ns
Table 1.26.7. Memory expansion and microprocessor modes
Symbol
tac1(RD-DB) tac2(RD-DB) tac3(RD-DB) tsu(DB-RD) tsu(RDY-BCLK ) tsu(HOLD-BCLK ) th(RD-DB) th(BCLK -RDY) th(BCLK-HOLD ) td(BCLK-HLDA )
Parameter
Data input access time (no wait) Data input access time (with wait) Data input access time (when accessing multiplex bus area) Data input setup time RDY input setup time HOLD input setup time Data input hold time RDY input hold time HOLD input hold time HLDA output delay time
Standard Max. Min.
(Note) (Note) (Note)
40 30 40 0 0 0 40
Unit
ns ns ns ns ns ns ns ns ns ns
Note: Calculated according to the BCLK frequency as follows:
tac1(RD - DB) = tac2(RD - DB) = tac3(RD - DB) =
10 9 - 45 f(BCLK) X 2 3 X 10 - 45 f(BCLK) X 2 3 X 10 - 45 f(BCLK) X 2
9 9
[ns]
[ns] [ns]
185
Mitsubishi microcomputers
M16C / 62 Group
Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified) Table 1.26.8. Timer A input (counter input in event counter mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 100 40 40 Unit ns ns ns
Table 1.26.9. Timer A input (gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Max. Min. 400 200 200 Unit ns ns ns
Table 1.26.10. Timer A input (external trigger input in one-shot timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Min. Standard Max. Unit ns ns ns
200 100 100
Table 1.26.11. Timer A input (external trigger input in pulse width modulation mode)
Symbol tw(TAH) tw(TAL) TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Max. Min. 100 100 Unit ns ns
Table 1.26.12. Timer A input (up/down input in event counter mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP-TIN) th(TIN-UP) TAiOUT input cycle time TAiOUT input HIGH pulse width TAiOUT input LOW pulse width TAiOUT input setup time TAiOUT input hold time Parameter Standard Max. Min. 2000 1000 1000 400 400 Unit ns ns ns ns ns
186
Mitsubishi microcomputers
M16C / 62 Group Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified) Table 1.26.13. Timer B input (counter input in event counter mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (counted on one edge) TBiIN input HIGH pulse width (counted on one edge) TBiIN input LOW pulse width (counted on one edge) TBiIN input cycle time (counted on both edges) TBiIN input HIGH pulse width (counted on both edges) TBiIN input LOW pulse width (counted on both edges) Standard Min. 100 40 40 200 80 80 Max. Unit ns ns ns ns ns ns
Table 1.26.14. Timer B input (pulse period measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 1.26.15. Timer B input (pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 1.26.16. A-D trigger input
Symbol tc(AD) tw(ADL) Parameter ADTRG input cycle time (trigger able minimum) ADTRG input LOW pulse width Standard Min. 1000 125 Max. Unit ns ns
Table 1.26.17. Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C-Q) th(C-Q) tsu(D-C) th(C-D) CLKi input cycle time CLKi input HIGH pulse width CLKi input LOW pulse width TxDi output delay time TxDi hold time RxDi input setup time RxDi input hold time
_______
Parameter
Standard Min. 200 100 100 80 0 30 90 Max.
Unit ns ns ns ns ns ns ns
Table 1.26.18. External interrupt INTi inputs
Symbol tw(INH) tw(INL) INTi input HIGH pulse width INTi input LOW pulse width Parameter Standard Min. 250 250 Max. Unit ns ns
187
Mitsubishi microcomputers
M16C / 62 Group
Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.19. Memory expansion mode and microprocessor mode (no wait)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB)
Parameter
Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard)(Note2) 10 9 - 40 f(BCLK) X 2
Measuring condition
Standard Min. Max.
25 4 0 0 25 4 25
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Figure 1.26.1
-4 25 0 25 0 40 4
(Note1)
0
Note 1: Calculated according to the BCLK frequency as follows:
td(DB - WR) = [ns]
Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus. Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC) by a circuit of the right figure. For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC / VCC) = 6.7ns.
R DBi C
188
Mitsubishi microcomputers
M16C / 62 Group Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.20. Memory expansion mode and microprocessor mode (with wait, accessing external memory)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB)
Parameter
Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard)(Note2) 10 9 f(BCLK)
Measuring condition
Standard Min. Max.
25 4 0 0 25 4 25
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Figure 1.26.1
-4 25 0 25 0 40 4 (Note1) 0
Note 1: Calculated according to the BCLK frequency as follows:
td(DB - WR) = - 40 [ns]
Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus. Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC) by a circuit of the right figure. For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC / VCC) = 6.7ns.
R DBi C
189
Mitsubishi microcomputers
M16C / 62 Group
Timing (VCC=5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.21. Memory expansion mode and microprocessor mode (with wait, accessing external memory, multiplex bus area selected) Standard Measuring condition Symbol Parameter Min. Max.
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) th(RD-CS) th(WR-CS) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-ALE) th(BCLK-ALE) td(AD-ALE) th(ALE-AD) td(AD-RD) td(AD-WR) tdZ(RD-AD) Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) Chip select output hold time (RD standard) Chip select output hold time (WR standard) RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard) ALE signal output delay time (BCLK standard) ALE signal output hold time (BCLK standard) ALE signal output delay time (Address standard) ALE signal output hold time (Adderss standard) Post-address RD signal output delay time Post-address WR signal output delay time Address output floating start time 10 9 f(BCLK) X 2 10 f(BCLK) X 2 10 9 f(BCLK) X 2 10 f(BCLK) X 2 10 X 3 - 40 f(BCLK) X 2 10 f(BCLK) X 2 10 9 - 25 f(BCLK) X 2
9 9 9 9
Unit
ns ns ns ns
25 4
(Note) (Note)
25 4
(Note) (Note)
ns ns ns ns ns ns ns ns ns ns ns
25 0 25
Figure 1.26.1
0 40 4
(Note) (Note)
25 -4
(Note)
ns ns ns ns ns ns
30 0 0 8
ns ns
Note: Calculated according to the BCLK frequency as follows:
th(RD - AD) = [ns]
th(WR - AD) =
[ns]
th(RD - CS) =
[ns]
th(WR - CS) =
[ns]
td(DB - WR) =
[ns]
th(WR - DB) =
[ns]
td(AD - ALE) =
[ns]
190
Mitsubishi microcomputers
M16C / 62 Group Timing
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
30pF
Figure 1.26.1. Port P0 to P10 measurement circuit
191
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (Up/down input) During event counter mode TAiIN input
(When count on falling edge is selected)
th(TIN-UP)
tsu(UP-TIN)
TAiIN input
(When count on rising edge is selected)
tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) TxDi td(C-Q) RxDi tw(INL) INTi input tw(INH) tsu(D-C) th(C-D) th(C-Q)
Figure 1.26.2. VCC=5V timing diagram (1)
192
t
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Memory Expansion Mode and Microprocessor Mode
(Valid only with wait)
BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY input
tsu(RDY-BCLK) th(BCLK-RDY)
(Valid with or without wait)
BCLK tsu(HOLD-BCLK) HOLD input th(BCLK-HOLD)
HLDA output td(BCLK-HLDA) P0, P1, P2, P3, P4, P50 to P52
Hi-Z
td(BCLK-HLDA)
Note: The above pins are set to high-impedance regardless of the input level of the BYTE pin and bit (PM06) of processor mode register 0 selects the function of ports P40 to P43. Measuring conditions : * VCC=5V * Input timing voltage : Determined with VIL=1.0V, VIH=4.0V * Output timing voltage : Determined with VOL=2.5V, VOH=2.5V
Figure 1.26.3. VCC=5V timing diagram (2)
193
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory Expansion Mode and Microprocessor Mode
(With no wait) Read timing
VCC = 5V
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi
tcyc
th(RD-CS)
0ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE RD
td(BCLK-ALE) th(BCLK-ALE)
25ns.max 25ns.max -4ns.min
th(RD-AD)
0ns.min
td(BCLK-RD)
th(BCLK-RD)
0ns.min
tac1(RD-DB) DB
Hi-Z
tSU(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi
tcyc
th(WR-CS)
0ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE) th(BCLK-ALE)
25ns.max
th(WR-AD) 0ns.min th(BCLK-WR)
0ns.min
-4ns.min
td(BCLK-WR) WR,WRL, WRH DB
25ns.max
td(BCLK-DB)
40ns.max Hi-Z
th(BCLK-DB)
4ns.min
(tcyc/2-40)ns.min
td(DB-WR)
th(WR-DB)
0ns.min
Figure 1.26.4. VCC=5V timing diagram (3)
194
t
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait) Read timing BCLK td(BCLK-CS)
25ns.max
VCC = 5V
th(BCLK-CS)
4ns.min
CSi
tcyc
th(RD-CS)
0ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE) 25ns.max
th(RD-AD)
0ns.min
th(BCLK-ALE)
-4ns.min
td(BCLK-RD) RD DB
25ns.max
th(BCLK-RD)
0ns.min
tac2(RD-DB)
Hi-Z
tSU(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi
tcyc
th(WR-CS)
0ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE)
25ns.max
th(WR-AD)
0ns.min
th(BCLK-ALE)
-4ns.min
td(BCLK-WR) WR,WRL, WRH DBi td(DB-WR)
(tcyc-40)ns.min 25ns.max
th(BCLK-WR)
0ns.min
td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
th(WR-DB)
0ns.min
Measuring conditions : * VCC=5V * Input timing voltage : Determined with: VIL=0.8V, VIH=2.5V * Output timing voltage : Determined with: VOL=0.8V, VOH=2.0V
Figure 1.26.5. VCC=5V timing diagram (4)
195
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory Expansion Mode and Microprocessor Mode
Read timing BCLK td(BCLK-CS)
25ns.max tcyc
VCC = 5V
(When accessing external memory area with wait, and select multiplexed bus)
th(RD-CS)
(tcyc/2)ns.min
th(BCLK-CS)
4ns.min
CSi ADi /DBi
td(AD-ALE)
(tcyc/2-25)ns.min Address
th(ALE-AD)
30ns.min Data input tac3(RD-DB) Address
tdz(RD-AD)
8ns.max
th(RD-DB) tSU(DB-RD) 0ns.min
40ns.min
td(AD-RD)
0ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE RD
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
(tcyc/2)ns.min
td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
Write timing BCLK td(BCLK-CS)
25ns.max tcyc
th(BCLK-CS) th(WR-CS)
(tcyc/2)ns.min 4ns.min
CSi td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min Data output Address
ADi /DBi
Address
td(AD-ALE)
(tcyc/2-25)ns.min
td(DB-WR)
(tcyc*3/2-40)ns.min
th(WR-DB)
(tcyc/2)ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
td(AD-WR)
0ns.min
th(WR-AD)
(tcyc/2)ns.min
td(BCLK-WR) WR,WRL, WRH
25ns.max
th(BCLK-WR)
0ns.min
Measuring conditions : * VCC=5V * Input timing voltage : Determined with VIL=0.8V, VIH=2.5V * Output timing voltage : Determined with VOL=0.8V, VOH=2.0V
Figure 1.26.6. VCC=5V timing diagram (5)
196
Mitsubishi microcomputers
M16C / 62 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Table 1.26.22. Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, f(XIN) = 7MHZ(Note 1) with wait)
Symbol
VOH HIGH output voltage
Parameter
Measuring condition
Standard Min Typ. Max.
2.5
Unit
V
P00 to P07,P10 to P17,P20 to P27, P30 to P37,P40 to P47,P50 to P57, IOH=-1mA P60 to P67,P72 to P77,P80 to P84, P86,P87,P90 to P97,P100 to P107 XOUT
HIGHPOWER LOWPOWER
VOH
HIGH output voltage
IOH=-0.1mA IOH=-50A With no load applied With no load applied
2.5 2.5 3.0 1 .6 V V
HIGH output voltage XCOUT LOW output voltage
HIGHPOWER LOWPOWER
VOL
P00 to P07,P10 to P17,P20 to P27, P30 to P37,P40 to P47,P50 to P57, IOL=1mA P60 to P67,P70 to P77,P80 to P84, P86,P87,P90 to P97,P100 to P107 XOUT
HIGHPOWER LOWPOWER
0 .5
V
VOL
LOW output voltage
IOL=0.1mA IOL=50A With no load applied With no load applied 0 0
0 .5 0 .5 V V
LOW output voltage XCOUT Hysteresis VT+-VT-
HIGHPOWER LOWPOWER
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, ADTRG, CTS0 to CTS2, CLK0 to CLK4,TA2OUT to TA4OUT,NMI, KI0 to KI3, RxD0 to RxD2, SIN3, SIN4 RESET P00 to P07,P10 to P17,P20 to P27, P30 to P37,P40 to P47,P50 to P57, P60 to P67,P70 to P77,P80 to P87, P90 to P97,P100 to P107, XIN, RESET, CNVss, BYTE
0.2
0 .8
V
VT+-VT-
Hysteresis HIGH input current
0.2
1.8
V
IIH
VI=3V
4 .0
A
LOW input current I IL
P00 to P07,P10 to P17,P20 to P27, P30 to P37,P40 to P47,P50 to P57, P60 to P67,P70 to P77,P80 to P87, P90 to P97,P100 to P107, XIN, RESET, CNVss, BYTE
VI=0V
-4.0
A
R PULLUP
Pull-up resistance
P00 to P07,P10 to P17,P20 to P27, P30 to P37,P40 to P47,P50 to P57, P60 to P67,P72 to P77,P80 to P84, P86,P87,P90 to P97,P100 to P107
VI=0V
66.0
120.0 3.0 10.0
500.0
k M M
V
R fXIN R fXCIN V RAM
Feedback resistance XIN Feedback resistance XCIN RAM retention voltage In single-chip mode, the output pins are open and other pins are VSS When clock is stopped EPROM,Onetime PROM versions Mask ROM version Flash memory 5V version f(XIN)=7MHz
Square wave, no division
2.0 6 .0 8 .5 13.5 40.0 15.0 21.25 21.25
mA mA mA A
f(XIN)=10MHz
Square wave, no division
f(XIN)=10MHz
Square wave, no division
EPROM,One-time f(XCIN)=32kHz PROM, mask Square wave ROM versions Flash memory 5V version Icc Power supply current Flash memory 5V version f(XCIN)=32kHz
Square wave in RAM
40.0 4.5
A mA
f(XCIN)=32kHz
Square wave, in flash memory
f(XCIN)=32kHz
When a WAITinstruction is executed. Oscillation capacity High (Note2)
2.8
A
f(XCIN)=32kHz
When a WAIT instruction is executed. Oscillation capacity Low (Note2)
0 .9
A
Ta=25C when clock is stopped Ta=85C when clock is stopped
1 .0 A 20.0
Note 1: 10 MHZ for the mask ROM version and flash memory 5V version. Note 2: With one timer operated using fC32.
197
Mitsubishi microcomputers
M16C / 62 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Table 1.26.23. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, VSS = AVSS = 0V at Ta = 25oC, f(XIN) = 7MHZ unless otherwise specified) Standard Symbol Parameter Measuring condition Unit Min. Typ. Max 10 VREF = VCC Bits Resolution
Absolute accuracy Sample & hold function not available (8 bit) VREF = VCC = 3V, AD = f(XIN)/2
RLADDER tCONV VREF VIA
Ladder resistance Conversion EPROM, One-time PROM Mask ROM, Flash memory (5V Version) time(8bit) Reference voltage Analog input voltage
VREF = VCC
10 14.0 9.8 2.7 0
2 40
LSB k s s V V
VCC VREF
Note: 10 MHZ for the mask ROM version and flash memory 5V version.
Table 1.26.24. D-A conversion characteristics (referenced to VCC = 3V, VSS = AVSS = 0V, VREF = 3V at Ta = 25oC, f(XIN) = 7MHZ(Note2) unless otherwise specified)
Symbol Parameter
Resolution Absolute accuracy Setup time Output resistance Reference power supply input current
Measuring condition
Standard Min. Typ. Max
8 1.0 3 20 1.0
Unit
Bits % s k mA
tsu RO IVREF
4 (Note1)
10
Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included. Also, when DA register contents are not "00", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register. Note 2: 10 MHZ for the mask ROM version and flash memory 5V version.
198
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)
Table 1.26.25. External clock input
Symbol
tc tw(H) tw(L) tr tf
Parameter
External clock input cycle time External clock input HIGH pulse width External clock input LOW pulse width External clock rise time External clock fall time EPROM, One-time PROM Mask ROM, Flash memory (5V version) EPROM, One-time PROM Mask ROM, Flash memory (5V version) EPROM, One-time PROM Mask ROM, Flash memory (5V version)
Standard Min. Max.
143 100 60 40 60 40 18 18
Unit
ns ns ns ns ns ns ns ns
Table 1.26.26. Memory expansion and microprocessor modes
Symbol
tac1(RD-DB) tac2(RD-DB) tac3(RD-DB) tsu(DB-RD) tsu(RDY-BCLK ) tsu(HOLD-BCLK ) th(RD-DB) th(BCLK -RDY) th(BCLK-HOLD ) td(BCLK-HLDA)
Parameter
Data input access time (no wait) Data input access time (with wait) Data input access time (when accessing multiplex bus area) Data input setup time RDY input setup time HOLD input setup time Data input hold time RDY input hold time HOLD input hold time HLDA output delay time 10 9 - 90 f(BCLK) X 2 3 X 10 - 90 f(BCLK) X 2 3 X 10 9 - 90 f(BCLK) X 2
9
Standard Min. Max.
(Note) (Note) (Note) 80 60 80 0 0 0 100
Unit
ns ns ns ns ns ns ns ns ns ns
Note: Calculated according to the BCLK frequency as follows:
tac1(RD - DB) = tac2(RD - DB) = tac3(RD - DB) =
[ns]
[ns]
[ns]
199
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)
Table 1.26.27. Timer A input (counter input in event counter mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 150 60 60 Unit ns ns ns
Table 1.26.28. Timer A input (gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. 600 300 300 Max. Unit ns ns ns
Table 1.26.29. Timer A input (external trigger input in one-shot timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 300 150 150 Unit ns ns ns
Table 1.26.30. Timer A input (external trigger input in pulse width modulation mode)
Symbol tw(TAH) tw(TAL) TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 150 150 Unit ns ns
Table 1.26.31. Timer A input (up/down input in event counter mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP-TIN) th(TIN-UP) TAiOUT input cycle time TAiOUT input HIGH pulse width TAiOUT input LOW pulse width TAiOUT input setup time TAiOUT input hold time Parameter Standard Min. Max. 3000 1500 1500 600 600 Unit ns ns ns ns ns
200
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)
Table 1.26.32. Timer B input (counter input in event counter mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (counted on one edge) TBiIN input HIGH pulse width (counted on one edge) TBiIN input LOW pulse width (counted on one edge) TBiIN input cycle time (counted on both edges) TBiIN input HIGH pulse width (counted on both edges) TBiIN input LOW pulse width (counted on both edges) Standard Min. 150 60 60 300 160 160 Max. Unit ns ns ns ns ns ns
Table 1.26.33. Timer B input (pulse period measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 600 300 300 Max. Unit ns ns ns
Table 1.26.34. Timer B input (pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. Max. 600 300 300 Unit ns ns ns
Table 1.26.35. A-D trigger input
Symbol tc(AD) tw(ADL) Parameter ADTRG input cycle time (trigger able minimum) ADTRG input LOW pulse width Standard Min. 1500 200 Max. Unit ns ns
Table 1.26.36. Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C-Q) th(C-Q) tsu(D-C) th(C-D) CLKi input cycle time CLKi input HIGH pulse width CLKi input LOW pulse width TxDi output delay time TxDi hold time RxDi input setup time RxDi input hold time
_______
Parameter
Standard Min. 300 150 150 160 0 50 90 Max.
Unit ns ns ns ns ns ns ns
Table 1.26.37. External interrupt INTi inputs
Symbol tw(INH) tw(INL) INTi input HIGH pulse width INTi input LOW pulse width Parameter Standard Min. 380 380 Max. Unit ns ns
201
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.38. Memory expansion and microprocessor modes (with no wait)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB)
Parameter
Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard)(Note2)
Measuring condition
Standard Min. Max. 60 4 0 0 60 4 60 --4 60 0 60 0 80 4 (Note1) 0
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Figure 1.26.1
Note 1: Calculated according to the BCLK frequency as follows:
td(DB - WR) = 10 f(BCLK) X 2
9
- 80
[ns]
Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus. Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC) by a circuit of the right figure. For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC / VCC) = 6.7ns.
R DBi C
202
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.39. Memory expansion and microprocessor modes (when accessing external memory area with wait)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB)
Parameter
Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard)(Note2)
Measuring condition
Figure 1.26.1
Standard Min. Max. 60 4 0 0 60 4 60 -4 60 0 60 0 80 4 (Note1) 0
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note 1: Calculated according to the BCLK frequency as follows:
td(DB - WR) = 10 f(BCLK)
9
- 80
[ns]
Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus. Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC) by a circuit of the right figure. For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC / VCC) = 6.7ns.
R DBi C
203
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = "1" unless otherwise specified) Table 1.26.40. Memory expansion and microprocessor modes (when accessing external memory area with wait, and select multiplexed bus)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) th(RD-CS) th(WR-CS) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-ALE) th(BCLK-ALE) td(AD-ALE) th(ALE-AD) td(AD-RD) td(AD-WR) tdZ(RD-AD)
Parameter
Address output delay time Address output hold time (BCLK standard) Address output hold time (RD standard) Address output hold time (WR standard) Chip select output delay time Chip select output hold time (BCLK standard) Chip select output hold time (RD standard) Chip select output hold time (WR standard) RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (BCLK standard) Data output hold time (BCLK standard) Data output delay time (WR standard) Data output hold time (WR standard) ALE signal output delay time (BCLK standard) ALE signal output hold time (BCLK standard) ALE signal output delay time (Address standard) ALE signal output hold time(Address standard) Post-address RD signal output delay time Post-address WR signal output delay time Address output floating start time
Measuring condition
Standard Min. Max. 60 4 (Note) (Note) 60 4 (Note) (Note) 60 0
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Figure 1.26.1
0
60 80 4 (Note) (Note) 60 -4 (Note) 50 0 0 8
ns ns ns ns ns ns ns
Note: Calculated according to the BCLK frequency as follows:
th(RD - AD) = 10 f(BCLK) X 2 10 9 f(BCLK) X 2 th(RD - CS) = 10 f(BCLK) X 2 10 9 f(BCLK) X 2 td(DB - WR) = 10 X 3 - 80 f(BCLK) X 2 10 9 f(BCLK) X 2 td(AD - ALE) = 10 9 f(BCLK) X 2 - 45 [ns]
9 9 9
[ns]
th(WR - AD) =
[ns]
[ns]
th(WR - CS) =
[ns]
[ns]
th(WR - DB) =
[ns]
204
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (Up/down input) During event counter mode TAiIN input
(When count on falling edge is selected)
th(TIN-UP)
tsu(UP-TIN)
TAiIN input
(When count on rising edge is selected)
tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input
tc(CK) tw(CKH) CLKi tw(CKL) TxDi td(C-Q) RxDi tw(INL) INTi input tw(INH) tsu(D-C) th(C-D) th(C-Q)
Figure 1.26.7. VCC=3V timing diagram (1)
205
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Memory Expansion Mode and Microprocessor Mode
(Valid only with wait)
BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY input
tsu(RDY-BCLK) th(BCLK-RDY)
(Valid with or without wait)
BCLK tsu(HOLD-BCLK) HOLD input th(BCLK-HOLD)
HLDA output td(BCLK-HLDA) P0, P1, P2, P3, P4, P50 to P52
Hi-Z
td(BCLK-HLDA)
Note: The above pins are set to high-impedance regardless of the input level of the BYTE pin and bit (PM06) of processor mode register 0 selects the function of ports P40 to P43. Measuring conditions : * VCC=3V * Input timing voltage : Determined with VIL=0.6V, VIH=2.4V * Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 1.26.8. VCC=3V timing diagram (2)
206
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory Expansion Mode and Microprocessor Mode
(With no wait) Read timing BCLK td(BCLK-CS)
60ns.max
VCC = 3V
th(BCLK-CS)
4ns.min
CSi
tcyc
th(RD-CS)
0ns.min
td(BCLK-AD)
60ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE RD
td(BCLK-ALE) th(BCLK-ALE)
-4ns.min 60ns.max
th(RD-AD) 0ns.min th(BCLK-RD)
0ns.min
td(BCLK-RD)
60ns.max
tac1(RD-DB) DB
Hi-Z
th(RD-DB) tSU(DB-RD)
80ns.min 0ns.min
Write timing BCLK td(BCLK-CS)
60ns.max
th(BCLK-CS)
4ns.min
CSi
tcyc
th(WR-CS)
0ns.min
td(BCLK-AD)
60ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE) th(BCLK-ALE)
60ns.max 60ns.max -4ns.min
th(WR-AD)
0ns.min
td(BCLK-WR) WR,WRL, WRH DB td(BCLK-DB)
80ns.max Hi-Z
th(BCLK-WR)
0ns.min
th(BCLK-DB)
4ns.min
th(WR-DB) td(DB-WR)
(tcyc/2-80)ns.min 0ns.min
Figure 1.26.9. VCC=3V timing diagram (3)
207
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait) Read timing BCLK td(BCLK-CS)
60ns.max
VCC = 3V
th(BCLK-CS)
4ns.min
CSi
tcyc
th(RD-CS)
0ns.min
td(BCLK-AD)
60ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE)
60ns.max
th(RD-AD)
0ns.min
th(BCLK-ALE)
-4ns.min
td(BCLK-RD)
60ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB) DB
Hi-Z
th(RD-DB) 0ns.min tSU(DB-RD)
80ns.min
Write timing BCLK td(BCLK-CS)
60ns.max
th(BCLK-CS)
4ns.min
CSi
tcyc
th(WR-CS)
0ns.min
td(BCLK-AD)
60ns.max
th(BCLK-AD)
4ns.min
ADi BHE ALE
td(BCLK-ALE)
60ns.max
th(WR-AD)
0ns.min
th(BCLK-ALE)
-4ns.min
td(BCLK-WR)
60ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH DBi
td(BCLK-DB)
80ns.max
th(BCLK-DB)
4ns.min
td(DB-WR)
(tcyc-80)ns.min
th(WR-DB)
0ns.min
Measuring conditions : * VCC=3V * Input timing voltage : Determined with VIL=0.48V, VIH=1.5V * Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 1.26.10. VCC=3V timing diagram (4)
208
Mitsubishi microcomputers
M16C / 62 Group
Timing (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait, and select multiplexed bus) Read timing BCLK td(BCLK-CS)
60ns.max tcyc
th(BCLK-CS) th(RD-CS)
(tcyc/2)ns.min 4ns.min
CSi td(AD-ALE) (tcyc/2-45)ns.min ADi /DBi
Address
tdz(RD-AD)
8ns.max Data input tac3(RD-DB) Address
th(ALE-AD)
50ns.min
th(RD-DB) tSU(DB-RD)
80ns.min 0ns.min
td(BCLK-AD) ADi BHE ALE RD
60ns.max
td(AD-RD)
0ns.min
th(BCLK-AD)
4ns.min
td(BCLK-ALE)
60ns.max
th(BCLK-ALE)
-4ns.min
(tcyc/2)ns.min
th(RD-AD)
td(BCLK-RD)
60ns.max
th(BCLK-RD)
0ns.min
Write timing BCLK td(BCLK-CS)
60ns.max tcyc
th(WR-CS)
(tcyc/2)ns.min
th(BCLK-CS)
4ns.min
CSi td(BCLK-DB)
80ns.max
th(BCLK-DB)
4ns.min Address
ADi /DBi
Address
Data output
(tcyc/2-60)ns.min
td(AD-ALE)
td(DB-WR)
(tcyc*3/2-80)ns.min
th(WR-DB)
(tcyc/2)ns.min
td(BCLK-AD) ADi BHE ALE
60ns.max
th(BCLK-AD)
4ns.min
td(BCLK-ALE) th(BCLK-ALE)
60ns.max -4ns.min
td(AD-WR)
0ns.min
th(WR-AD)
(tcyc/2)ns.min
td(BCLK-WR) WR,WRL, WRH
60ns.max
th(BCLK-WR)
0ns.min
Measuring conditions : * VCC=3V * Input timing voltage : Determined with VIL=0.48V,VIH=1.5V * Output timing voltage : Determined with VOL=1.5V,VOH=1.5V
Figure 1.26.11. VCC=3V timing diagram (5)
209
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
58B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
.
)
Customer Date issued Date :
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30620M8-XXXFP M30620M8-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620M8 0001016 2FFFF16 3000016 ROM(64K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620M8 0001016 6FFFF16 7000016 ROM(64K)
signature
Issuance
Company name
TEL (
Submitted by
Supervisor
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30620M8-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '0 ' 'M ' '8 '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3016 = 4D16 = 3816 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
210
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
58B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXGP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30620M8- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30620M8- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk. Microcomputer type No. : File code : M30620M8-XXXFP M30620M8-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30620M8-XXXFP, submit the 100P6S mark specification sheet. For the M30620M8-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
211
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
58B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
212
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
60B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
signature Issuance
.
Company name Customer Date issued Date :
TEL ( )
Submitted by
Supervisor
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30620MA-XXXFP M30620MA-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620MA0001016 27FFF16 2800016 ROM(96K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620MA 0001016 67FFF16 6800016 ROM(96K)
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30620MA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '0 ' 'M ' 'A '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3016 = 4D16 = 4116 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
213
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
60B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXGP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30620MA- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30620MA- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. : File code :
M30620MA-XXXFP
M30620MA-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30620MA-XXXFP, submit the 100P6S mark specification sheet. For the M30620MA-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
214
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
60B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
215
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
62B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
.
)
Customer Date issued Date :
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30620MC-XXXFP M30620MC-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620MC0001016 1FFFF16 2000016 ROM(128K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30620MC 0001016 5FFFF16 6000016 ROM(128K)
signature
Issuance
Company name
TEL (
Submitted by
Supervisor
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30620MC-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '0 ' 'M ' 'C '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3016 = 4D16 = 4316 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
216
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
62B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30620MC- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30620MC- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. : File code :
M30620MC-XXXFP
M30620MC-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30620MC-XXXFP, submit the 100P6S mark specification sheet. For the M30620MC-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
217
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
62B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
218
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
74B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
signature Issuance
.
Company name Customer Date issued Date :
TEL (
Submitted by
Supervisor
)
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30622M4-XXXFP M30622M4-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C101
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622M40001016 17FFF16 1800016 ROM(32K) 1FFFF16 3FFFF16
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622M4 0001016 37FFF16 3800016 ROM(32K) 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622M4 0001016 77FFF16 7800016 ROM(32K)
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30622M4-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '2 ' 'M ' '4 '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3216 = 4D16 = 3416 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
219
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
74B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C101 .SECTION ASCIICODE, ROM DATA .ORG 0E0000H .BYTE ' M30622M4- ' 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30622M4- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30622M4- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk. Microcomputer type No. : File code : M30622M4-XXXFP M30622M4-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30622M4-XXXFP, submit the 100P6S mark specification sheet. For the M30622M4-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
220
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
74B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
221
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
64B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
.
( Date :
)
Customer Date issued
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30622M8-XXXFP M30622M8-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622M8 0001016 2FFFF16 3000016 ROM(64K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622M8 0001016 6FFFF16 7000016 ROM(64K)
signature
Issuance
Company name
TEL
Submitted by
Supervisor
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30622M8-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '2 ' 'M ' '8 '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3016 = 4D16 = 3816 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
222
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
64B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30622M8- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30622M8- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk. Microcomputer type No. : File code : M30622M8-XXXFP M30622M8-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30622M8-XXXFP, submit the 100P6S mark specification sheet. For the M30622M8-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
223
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
64B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
224
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
66B <82A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
.
)
Customer Date issued Date :
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30622MA-XXXFP M30622MA-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622MA0001016 27FFF16 2800016 ROM(96K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622MA 0001016 67FFF16 6800016 ROM(96K)
signature
Issuance
Company name
TEL (
Submitted by
Supervisor
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30622MA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '2 ' 'M ' 'A '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3216 = 4D16 = 4116 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
225
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
66B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXGP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30622MA- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30622MA- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. : File code :
M30622MA-XXXFP
M30622MA-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30622MA-XXXFP, submit the 100P6S mark specification sheet. For the M30622MA-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
226
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
66B <82A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
227
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
03B <77A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
.
)
Customer Date issued Date :
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30622MC-XXXFP M30622MC-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C201
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622MC0001016 1FFFF16 2000016 ROM(128K) 3FFFF16 7FFFF16
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30622MC 0001016 5FFFF16 6000016 ROM(128K)
signature
Issuance
Company name
TEL (
Submitted by
Supervisor
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30622MC-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '2 ' 'M ' 'C '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3216 = 4D16 = 4316 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
228
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
03B <77A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C201 .SECTION ASCIICODE, ROM DATA .ORG 0C0000H .BYTE ' M30622MC- ' 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30622MC- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. : File code :
M30622MC-XXXFP
M30622MC-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30622MC-XXXFP, submit the 100P6S mark specification sheet. For the M30622MC-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
229
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
03B <77A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
230
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
78B <83A0> Mask ROM number
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM
Receipt
Date :
Section head signature Supervisor signature
Note : Please complete all items marked
signature Issuance
.
Company name Customer Date issued Date :
TEL (
Submitted by
Supervisor
)
1. Check sheet Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern. In the case of EPROMs Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi. Microcomputer type No. : M30624MG-XXXFP M30624MG-XXXGP (hex)
Checksum code for total EPROM area : EPROM type :
27C401
Address
0000016 Product : Area containing ASCII 0000F16 code for M30624MG0001016 3FFFF16 4000016 ROM(128K) 7FFFF16
(1) Write "FF16" to the lined area. (2) The area from 0000016 to 0000F16 is for storing data on the product type name. The ASCII code for 'M30624MG-' is shown at right. The data in this table must be written to address 0000016 to 0000F16. Both address and data are shown in hex.
Address
0000016 0000116 0000216 0000316 0000416 0000516 0000616 0000716
Address 'M ' '3 ' '0 ' '6 ' '2 ' '4 ' 'M ' 'G '
= 4D16 = 3316 = 3016 = 3616 = 3216 = 3416 = 4D16 = 4716 0000816 ' -- ' = 2D16 0000916 FF16 0000A16 FF16 FF16 0000B16 FF16 0000C16 FF16 0000D16 FF16 0000E16 FF16 0000F16
231
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
78B <83A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program. EPROM type Code entered in source program 27C401 .SECTION ASCIICODE, ROM DATA .ORG 080000H .BYTE ' M30624MG- '
Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet. In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk. Microcomputer type No. : File code : M30624MG-XXXFP M30624MG-XXXGP (hex)
Mask file name :
.MSK (alpha-numeric 8-digit)
2. Mark specification The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi. For the M30624MG-XXXFP, submit the 100P6S mark specification sheet. For the M30624MG-XXXGP, submit the 100P6Q mark specification sheet. 3. Usage Conditions For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered. (1) Which kind of XIN-XOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XIN) = MHZ Quartz-crystal oscillator Other ( )
232
t
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ
SH12
78B <83A0>
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM
Mask ROM number
(2) Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHZ Quartz-crystal oscillator Other ( )
(3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? -10 C to 75 C -10 C to 85 C -20 C to 75 C -20 C to 85 C -40 C to 75 C -40 C to 85 C Memory expansion mode
(5) Which operating supply voltage do you use? 2.7V to 3.2V 4.2V to 4.7V Thank you cooperation. 3.2V to 3.7V 4.7V to 5.2V 3.7V to 4.2V 5.2V to 5.5V
4. Special item (Indicate none if there is no specified item)
233
Mitsubishi microcomputers
M16C / 62 Group
Description (Flash Memory Version) Outline Performance
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.28.1 shows the outline performance of the M16C/62 (flash memory version) and Table 1.28.2 shows the power supply current( Typ.). Table 1.28.1. Outline Performance of the M16C/62 (flash memory version)
Item Power supply voltage Performance 5V version: 2.7V to 5.5 V (f(XIN)=16MHz, without wait, 4.2V to 5.5V, f(XIN)=10MHz, with one wait, 2.7V to 5.5V) 3V version: 2.4V to 3.6 V (f(XIN)=10MHz, without wait, 2.7V to 3.6V, f(XIN)=7MHz, without wait, 2.4V to 3.6V) 5V version: 4.2V to 5.5 V (f(XIN)=12.5MHz, with one wait, f(XIN)=6.25MHz, without wait) 3V version: 2.7V to 3.6 V (f(XIN)=10MHz, with one wait, f(XIN)=6.25MHz, without wait) Flash memory operation mode Erase block division User ROM area Boot ROM area Three modes (parallel I/O, standard serial I/O, CPU rewrite) See Figure 1.28.1 One division (8 Kbytes) (Note 1) In units of pages (in units of 256 bytes) Collective erase/block erase Program/erase control by software command Protected for each block by lock bit 8 commands 100 times Parallel I/O and standard serial modes are supported. 10MHz (VCC=2.7V to 3.6V,without wait) 10 X VCC - 17 MHz (VCC=2.4V to 2.7V,without wait) 12.0mA(Typ.), 21.25mA(Max.) (VCC=3V, f(XIN)=10MHz, square wave, no division, without wait) 40A(Typ.) (VCC=3V, f(XCIN)=32kHz, square wave, without wait) [operate in RAM] 700A(Typ.) (VCC=3V, f(XCIN)=32kHz, square wave, without wait) [operate in flash memory] Note1: The boot ROM area contains a standard serial I/O mode control program which is stored in it when shipped from the factory. This area can be erased and programmed in only parallel I/O mode. Note2: Refer to recommended operating conditions about 5 V version. 3V version relationship between main clock oscillation frequency and supply voltage are as follows.
Main clock input oscillation frequency (flash memory 3V version, without wait)
Operating maximum frequency [MHZ]
Program/erase voltage
Program method Erase method Program/erase control method Protect method Number of commands Program/erase count ROM code protect 3V version main clock input oscillation frequency(Max.) (Note2) 3V version power supply current (Notes 3, 4)
10.0
10 X VCC - 17MHZ
7.0
0.0 2.4 2.7 3.6
Supply voltage[V] (BCLK: no division)
Note3: Refer to electric characteristic about 5V version. Note4: A standard value in stop and wait modes do not depend on a kind of memory to have built-in and is the same class. Refer to electric characteristic in VCC=3V.
Table 1.28.2. Power supply current (typ.) of the M16C/62 (flash memory version)
Standard (Typ.) Parameter 5V power supply current(5V version) 3V power supply current(5V version) 3V power supply current(3V version) Measuring condition Read f(XIN)=16MHz, without wait, No division f(XIN)=10MHz, with wait, No division f(XIN)=10MHz, without wait, No division 35mA 13.5mA 12mA Program 28mA 17mA Erase 25mA 14mA Division by 2 in program/erase Division by 4 in program/erase Remark
234
Mitsubishi microcomputers
M16C / 62 Group
Description (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Flash Memory
The M16C/62 (flash memory version) contains the DINOR (DIvided bit line NOR) type of flash memory that can be rewritten with a single voltage of 5 V or 3.3 V. For this flash memory, three flash memory modes are available in which to read, program, and erase: parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU). Each mode is detailed in the pages to follow. The flash memory is divided into several blocks as shown in Figure 1.28.1, so that memory can be erased one block at a time. Each block has a lock bit to enable or disable execution of an erase or program operation, allowing for data in each block to be protected. In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash memory has a boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This boot ROM area can be rewritten in only parallel I/O mode.
0C000016 Block 6 : 64K byte
0D000016 Block 5 : 64K byte
0E000016 Block 4 : 64K byte Note 1: The boot ROM area can be rewritten in only parallel input/output mode. (Access to any other areas is inhibited.) Note 2: To specify a block, use the maximum address in the block that is an even address.
0F000016 Flash memory Flash memory start address size 256 K byte 0C000016 0F800016 0FA00016 0FC00016 0FFFFF16
Block 3 : 32K byte Block 2 : 8K byte Block 1 : 8K byte Block 0 : 16K byte User ROM area
0FE00016 0FFFFF16
8K byte Boot ROM area
Figure 1.28.1. Block diagram of flash memory version
235
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CPU Rewrite Mode
In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU). In CPU rewrite mode, only the user ROM area shown in Figure 1.28.1 can be rewritten; the boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the user ROM area and each block area. The control program for CPU rewrite mode can be stored in either user ROM or boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to any area other than the internal flash memory before it can be executed.
Microcomputer Mode and Boot Mode
The control program for CPU rewrite mode must be written into the user ROM or boot ROM area in parallel I/O mode beforehand. (If the control program is written into the boot ROM area, the standard serial I/O mode becomes unusable.) See Figure 1.28.1 for details about the boot ROM area. Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVSS pin low. In this case, the CPU starts operating using the control program in the user ROM area. When the microcomputer is reset by pulling the P55 pin low, the CNVSS pin high, and the P50 pin high, the CPU starts operating using the control program in the boot ROM area. This mode is called the "boot" mode. The control program in the boot ROM area can also be used to rewrite the user ROM area.
Block Address
Block addresses refer to the maximum even address of each block. These addresses are used in the block erase command, lock bit program command, and read lock status command.
236
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Outline Performance (CPU Rewrite Mode)
In the CPU rewrite mode, the CPU erases, programs and reads the internal flash memory as instructed by software commands. Operations must be executed from a memory other than the internal flash memory, such as the internal RAM. When the CPU rewrite mode select bit (bit 1 at address 03B716) is set to "1", transition to CPU rewrite mode occurs and software commands can be accepted. In the CPU rewrite mode, write to and read from software commands and data into even-numbered address ("0" for byte address A0) in 16-bit units. Always write 8-bit software commands into even-numbered address. Commands are ignored with odd-numbered addresses. Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register. Figure 1.29.1 shows the flash memory control register 0 and the flash memory control register 1. _____ Bit 0 of the flash memory control register 0 is the RY/BY status flag used exclusively to read the operating status of the flash memory. During programming and erase operations, it is "0". Otherwise, it is "1". Bit 1 of the flash memory control register 0 is the CPU rewrite mode select bit. The CPU rewrite mode is entered by setting this bit to "1", so that software commands become acceptable. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly. Therefore, write bit 1 in an area other than the internal flash memory. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. The bit can be set to "0" by only writing a "0" . Bit 2 of the flash memory control register 0 is a lock bit disable bit. By setting this bit to "1", it is possible to disable erase and write protect (block lock) effectuated by the lock bit data. The lock bit disable select bit only disables the lock bit function; it does not change the lock data bit value. However, if an erase operation is performed when this bit ="1", the lock bit data that is "0" (locked) is set to "1" (unlocked) after erasure. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. This bit can be manipulated only when the CPU rewrite mode select bit = "1". Bit 3 of the flash memory control register 0 is the flash memory reset bit used to reset the control circuit of the internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU rewrite mode select bit is "1", writing "1" for this bit resets the control circuit. To release the reset, it is necessary to set this bit to "0". Bit 5 of the flash memory control register 0 is a user ROM area select bit which is effective in only boot mode. If this bit is set to "1" in boot mode, the area to be accessed is switched from the boot ROM area to the user ROM area. When the CPU rewrite mode needs to be used in boot mode, set this bit to "1". Note that if the microcomputer is booted from the user ROM area, it is always the user ROM area that can be accessed and this bit has no effect. When in boot mode, the function of this bit is effective regardless of whether the CPU rewrite mode is on or off. Use the control program except in the internal flash memory to rewrite this bit.
237
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bit 3 of the flash memory control register 1 turns power supply to the internal flash memory on/off. When this bit is set to "1", power is not supplied to the internal flash memory, thus power consumption can be reduced. However, in this state, the internal flash memory cannot be accessed. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. Use this bit mainly in the low speed mode (when XCIN is the block count source of BCLK). When the CPU is shifted to the stop or wait modes, power to the internal flash memory is automatically shut off. It is reconnected automatically when CPU operation is restored. Therefore, it is not particularly necessary to set flash memory control register 1. Figure 1.29.2 shows a flowchart for setting/releasing the CPU rewrite mode. Figure 1.29.3 shows a flowchart for shifting to the low speed mode. Always perform operation as indicated in these flowcharts.
Flash memory control register 0
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
FMR0 Bit symbol
Address
03B716
When reset
XX0000012
0
Bit name RY/BY status flag CPU rewrite mode select bit (Note 1)
Function 0: Busy (being written or erased) 1: Ready 0: Normal mode (Software commands invalid) 1: CPU rewrite mode (Software commands acceptable) 0: Block lock by lock bit data is enabled 1: Block lock by lock bit data is disabled 0: Normal operation 1: Reset Must always be set to "0"
RW RW
FMR00 FMR01
FMR02
Lock bit disable bit (Note 2)
FMR03
Flash memory reset bit (Note 3)
Reserved bit FMR05
User ROM area select bit ( 0: Boot ROM area is accessed Note 4) (Effective in only 1: User ROM area is accessed boot mode)
Nothing is assigned. When write, set "0". When read, values are indeterminate. Note 1: For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Use the control program except in the internal flash memory for write to this bit. Note 2: For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession when the CPU rewrite mode select bit = "1". When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to 0 subsequently after setting it to 1 (reset). Note 4: Use the control program except in the internal flash memory for write to this bit.
Flash memory control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
FMR1 Bit symbol
Address
03B616
When reset
XXXX0XXX2
0000
000
Bit name
Function Must always be set to "0" 0: Flash memory power supply is connected 1: Flash memory power supply-off Must always be set to "0"
RW RW
Reserved bit FMR13 Flash memory power supply-OFF bit (Note)
Reserved bit
Note : For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Use the control program except in the internal flash memory for write to this bit. During parallel I/O mode,programming,erase or read of flash memory is not controlled by this bit,only by external pins.
Figure 1.29.1. Flash memory control registers
238
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Program in ROM
Start
Program in RAM
*1
Single-chip mode, memory expansion mode, or boot mode
(Boot mode only) Set user ROM area select bit to "1"
Set processor mode register (Note 1)
Set CPU rewrite mode select bit to "1" (by writing "0" and then "1" in succession)(Note 2)
Transfer CPU rewrite mode control program to internal RAM
Using software command execute erase, program, or other operation (Set lock bit disable bit as required)
Jump to transferred control program in RAM (Subsequent operations are executed by control program in this RAM)
Execute read array command or reset flash memory by setting flash memory reset bit (by writing "1" and then "0" in succession) (Note 3)
*1 Write "0" to CPU rewrite mode select bit
(Boot mode only) Write "0" to user ROM area select bit (Note 4)
End Note 1: During CPU rewrite mode, set the main clock frequency as shown below using the main clock divide ratio select bit (bit 6 at address 000616 and bits 6 and 7 at address 000716): 6.25 MHz or less when wait bit (bit 7 at address 000516) = "0" (without internal access wait state) 12.5 MHz or less when wait bit (bit 7 at address 000516) = "1" (with internal access wait state) Note 2: For CPU rewrite mode select bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Note 3: Before exiting the CPU rewrite mode after completing erase or program operation, always be sure to execute a read array command or reset the flash memory. Note 4: "1" can be set. However, when this bit is "1", user ROM area is accessed.
Figure 1.29.2. CPU Rewrite Mode Set/Reset Flowchart
Program in ROM
Start
Program in RAM
*1
Transfer the program to be executed in the low speed mode, to the internal RAM.
Set flash memory power supply-OFF bit to "1" (by writing "0" and then "1" in succession)(Note 1)
Jump to transferred control program in RAM (Subsequent operations are executed by control program in this RAM)
Switch the count source of BCLK. XIN stop. (Note 2)
*1
Process of low speed mode
XIN oscillating
Wait until the XIN has stabilized
Switch the count source of BCLK (Note 2)
Set flash memory power supply-OFF bit to "0"
Wait time until the internal circuit stabilizes (Set NOP instruction about twice)
End Note 1: For flash memory power supply-OFF bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Note 2: Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably.
Figure 1.29.3. Shifting to The Low Speed Mode Flowchart
239
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Precautions on CPU Rewrite Mode
Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode. (1) Operation speed During CPU rewrite mode, set the main clock frequency as shown below using the main clock divide ratio select bit (bit 6 at address 000616 and bits 6 and 7 at address 000716): 6.25 MHz or less when wait bit (bit 7 at address 000516) = 0 (without internal access wait state) 12.5 MHz or less when wait bit (bit 7 at address 000516) = 1 (with internal access wait state) (2) Instructions inhibited against use The instructions listed below cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction (3) Interrupts inhibited against use The address match interrupt cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory. If interrupts have their vector in the variable vector table, they can be _______ used by transferring the vector into the RAM area. The NMI and watchdog timer interrupts each can be used to change the flash memory's operation mode forcibly to read array mode upon occurrence of _______ the interrupt. Since the rewrite operation is halted when the NMI and watchdog timer interrupts occur, the erase/program operation needs to be performed over again. Disabling erase or rewrite operations for address FC00016 to address FFFFF16 in the user ROM block disables these operations for all subsequent blocks as well. Therefore, it is recommended to rewrite this block in the standard serial I/O mode. (4) Internal reserved area expansion bit (Bit 3 at address 000516) The reserved area of the internal memory can be changed by using the internal reserved area expansion bit (bit 3 at address 000516). However, if the CPU rewrite mode select bit (bit 1 at address 03B716) is set to 1, the internal reserved area expansion bit (bit 3 at address 000516) also is set to 1 automatically. Similarly, if the CPU rewrite mode select bit (bit 1 at address 03B716) is set to 0, the internal reserved area expansion bit (bit 3 at address 000516) also is set to 0 automatically. The precautions above apply to the M30624FG and M30624FGL only. (5) Reset Reset input is always accepted. After a reset, the addresses 0C000016 through 0CFFFF16 are made a reserved area and cannot be accessed. Therefore, if your product has this area in the user ROM area, do not write any address of this area to the reset vector. This area is made accessible by changing the internal reserved area expansion bit (bit 3 at address 000516) in a program. (6) Access disable Write CPU rewrite mode select bit, flash memory power supply-OFF bit and user ROM area select bit in an area other than the internal flash memory. (7) How to access For CPU rewrite mode select bit, lock bit disable bit, and flash memory power supply-OFF bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval.
240
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Software Commands
Table 1.29.1 lists the software commands available with the M16C/62 (flash memory version). After setting the CPU rewrite mode select bit to 1, write a software command to specify an erase or program operation. Note that when entering a software command, the upper byte (D8 to D15) is ignored. The content of each software command is explained below. Table 1.29.1. List of Software Commands (CPU Rewrite Mode)
First bus cycle Command Read array Read status register Clear status register Page program Block erase Erase all unlock block Lock bit program Read lock bit status
(Note 3)
Second bus cycle Mode Address Data (D0 to D7)
Third bus cycle Data Mode Address (D0 to D7)
Mode Write Write Write Write Write Write Write Write
Address X
(Note 6)
Data (D0 to D7) FF16 7016 5016 4116 2016 A716 7716 7116
X X X X X X X
Read
X
SRD
(Note 2)
Write Write Write Write Read
WA0 (Note 3) WD0 (Note 3) Write BA
(Note 4)
WA1
WD1
D016 D016 D016 D6
(Note 5)
X BA BA
Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored. Note 2: SRD = Status Register Data Note 3: WA = Write Address, WD = Write Data WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is 256 bytes. Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.) Note 5: D6 corresponds to the block lock status. Block not locked when D6 = 1, block locked when D6 = 0. Note 6: X denotes a given address in the user ROM area (that is an even address).
Read Array Command (FF16) The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an even address to be read is input in one of the bus cycles that follow, the content of the specified address is read out at the data bus (D0-D15), 16 bits at a time. The read array mode is retained intact until another command is written. Read Status Register Command (7016) When the command code "7016" is written in the first bus cycle, the content of the status register is read out at the data bus (D0-D7) by a read in the second bus cycle. The status register is explained in the next section. Clear Status Register Command (5016) This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.
241
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Page Program Command (4116) Page program allows for high-speed programming in units of 256 bytes. Page program operation starts when the command code "4116" is written in the first bus cycle. In the second bus cycle through the 129th bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to be incremented by 2 from "0016" to "FE16." When the system finishes loading the data, it starts an auto write operation (data program and verify operation). Whether the auto write operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto write operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to 1 upon completion of the auto write operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit. ____ The RY/BY status flag of the flash memory control register 0 is 0 during auto write operation and 1 when the auto write operation is completed as is the status register bit 7. After the auto write operation is completed, the status register can be read out to know the result of the auto write operation. For details, refer to the section where the status register is detailed. Figure 1.29.4 shows an example of a page program flowchart. Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section where the data protect function is detailed. Additional writes to the already programmed pages are prohibited.
Start Write 4116 n=0
Write address n and data n NO
n=n+2
n = FE16 YES
RY/BY status flag = 1? YES Check full status Page program completed
NO
Figure 1.29.4. Page program flowchart
242
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Block Erase Command (2016/D016) By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates an auto erase (erase and erase verify) operation. Whether the auto erase operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of the auto erase operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit. ____ The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when the auto erase operation is completed as is the status register bit 7. After the auto erase operation is completed, the status register can be read out to know the result of the auto erase operation. For details, refer to the section where the status register is detailed. Figure 1.29.5 shows an example of a block erase flowchart. Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to the section where the data protect function is detailed.
Start
Write 2016 Write D016 Block address
RY/BY status flag = 1? YES Check full status check
NO
Block erase completed
Figure 1.29.5. Block erase flowchart
243
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Erase All Unlock Blocks Command (A716/D016) By writing the command code "A716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows, the system starts erasing blocks successively. Whether the erase all unlock blocks command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for block erase. Also, the status register can be read out to know the result of the auto erase operation. When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective and only nonlocked blocks (where lock bit data = 1) are erased. Lock Bit Program Command (7716/D016) By writing the command code "7716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for the specified block to 0 (locked). Figure 1.29.6 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can be read out by a read lock bit status command. Whether the lock bit program command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for page program. For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data protect function is detailed.
Start
Write 7716 Write D016 block address
RY/BY status flag = 1? YES SR4 = 0? NO
NO
Lock bit program in error
YES Lock bit program completed
Figure 1.29.6. Lock bit program flowchart
244
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Read Lock Bit Status Command (7116) By writing the command code "7116" in the first bus cycle and then the block address of a flash memory block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified block on to the data (D6). Figure 1.29.7 shows an example of a read lock bit program flowchart.
Start
Write 7116
Enter block address
(Note)
NO
D6 = 0? YES Blocks locked Blocks not locked
Note: Data bus bit 6.
Figure 1.29.7. Read lock bit status flowchart
245
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Data Protect Function (Block Lock)
Each block in Figure 1.28.1 has a nonvolatile lock bit to specify that the block be protected (locked) against erase/write. The lock bit program command is used to set the lock bit to 0 (locked). The lock bit of each block can be read out using the read lock bit status command. Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash memory control register 0's lock bit disable bit is set. (1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write. On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/ write. (2) When the lock bit disable bit = 1, all blocks are nonlocked regardless of the lock bit data, so they are enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (nonlocked) after erasure, so that the lock bit-actuated lock is removed.
Status Register
The status register indicates the operating status of the flash memory and whether an erase or program operation has terminated normally or in an error. The content of this register can be read out by only writing the read status register command (7016). Table 1.29.2 details the status register. The status register is cleared by writing the Clear Status Register command (5016). After a reset, the status register is set to "8016." Each bit in this register is explained below. Write state machine (WSM) status (SR7) After power-on, the write state machine (WSM) status is set to 1. The write state machine (WSM) status indicates the operating status of the device, as for output on the ____ RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon completion of these operations. Erase status (SR5) The erase status informs the operating status of auto erase operation to the CPU. When an erase error occurs, it is set to 1. The erase status is reset to 0 when cleared.
246
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Program status (SR4) The program status informs the operating status of auto write operation to the CPU. When a write error occurs, it is set to 1. The program status is reset to 0 when cleared. When an erase command is in error (which occurs if the command entered after the block erase command (2016) is not the confirmation command (D016), both the program status and erase status (SR5) are set to 1. When the program status or erase status = 1, the following commands entered by command write are not accepted. Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error): (1) When the valid command is not entered correctly (2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered, read array is assumed and the command that has been set up in the first bus cycle is canceled. Block status after program (SR3) If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output. Table 1.29.2. Definition of each bit in status register
Each bit of SRD SR7 (bit7) SR6 (bit6) SR5 (bit5) SR4 (bit4) SR3 (bit3) SR2 (bit2) SR1 (bit1) SR0 (bit0) Definition Status name Write state machine (WSM) status Reserved Erase status Program status Block status after program Reserved Reserved Reserved "1" Ready Terminated in error Terminated in error Terminated in error "0" Busy Terminated normally Terminated normally Terminated normally -
247
Mitsubishi microcomputers
M16C / 62 Group
CPU Rewrite Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Full Status Check By performing full status check, it is possible to know the execution results of erase and program operations. Figure 1.29.8 shows a full status check flowchart and the action to be taken when each error occurs.
Read status register
YES SR4=1 and SR5 =1 ? NO SR5=0? YES SR4=0? YES NO NO
Command sequence error
Execute the clear status register command (5016) to clear the status register. Try performing the operation one more time after confirming that the command is entered correctly. Should a block erase error occur, the block in error cannot be used.
Block erase error
Program error (page or lock bit)
Execute the read lock bit status command (7116) to see if the block is locked. After removing lock, execute write operation in the same way. If the error still occurs, the page in error cannot be used. After erasing the block in error, execute write operation one more time. If the same error still occurs, the block in error cannot be used.
SR3=0? YES
NO
Program error (block)
End (block erase, program)
Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase, erase all unlock blocks and lock bit program commands is accepted. Execute the clear status register command (5016) before executing these commands.
Figure 1.29.8. Full status check flowchart and remedial procedure for errors
248
Mitsubishi microcomputers
M16C / 62 Group
Functions To Inhibit Rewriting (Flash Memory Version) Functions To Inhibit Rewriting Flash Memory Version
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
To prevent the contents of the flash memory version from being read out or rewritten easily, the device incorporates a ROM code protect function for use in parallel I/O mode and an ID code check function for use in standard serial I/O mode.
ROM code protect function
The ROM code protect function reading out or modifying the contents of the flash memory version by using the ROM code protect control address (0FFFFF16) during parallel I/O mode. Figure 1.29.9 shows the ROM code protect control address (0FFFFF16). (This address exists in the user ROM area.) If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents of the flash memory version are protected against readout and modification. ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is selected by default. If both of the two ROM code protect reset bits are set to "00," ROM code protect is turned off, so that the contents of the flash memory version can be read out or modified. Once ROM code protect is turned on, the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/ O or some other mode to rewrite the contents of the ROM code protect reset bits.
ROM code protect control address
b7 b6 b5 b4 b3 b2 b1 b0
Symbol ROMCP
Address 0FFFFF16
When reset FF16
Bit symbol
Bit name
Function Always set this bit to 1.
b3 b2
Reserved bit
ROMCP2
ROM code protect level 2 set bit (Note 1, 2)
00: Protect enabled 01: Protect enabled 10: Protect enabled 11: Protect disabled
b5 b4
ROMCR
ROM code protect reset bit (Note 3)
00: Protect removed 01: Protect set bit effective 10: Protect set bit effective 11: Protect set bit effective
b7 b6
ROMCP1
ROM code protect level 1 set bit (Note 1)
00: Protect enabled 01: Protect enabled 10: Protect enabled 11: Protect disabled
Note 1: When ROM code protect is turned on, the on-chip flash memory is protected against readout or modification in parallel input/output mode. Note 2: When ROM code protect level 2 is turned on, ROM code readout by a shipment inspection LSI tester, etc. also is inhibited. Note 3: The ROM code protect reset bits can be used to turn off ROM code protect level 1 and ROM code protect level 2. However, since these bits cannot be changed in parallel input/ output mode, they need to be rewritten in serial input/output or some other mode.
Figure 1.29.9. ROM code protect control address
249
Mitsubishi microcomputers
M16C / 62 Group
Functions To Inhibit Rewriting (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ID Code Check Function
Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the peripheral unit is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the peripheral unit are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716, and 0FFFFB16. Write a program which has had the ID code preset at these addresses to the flash memory.
Address 0FFFDC16 to 0FFFDF16 0FFFE016 to 0FFFE316 0FFFE416 to 0FFFE716 0FFFE816 to 0FFFEB16 0FFFEC16 to 0FFFEF16 0FFFF016 to 0FFFF316 0FFFF416 to 0FFFF716 0FFFF816 to 0FFFFB16 0FFFFC16 to 0FFFFF16 ID1 Undefined instruction vector ID2 Overflow vector BRK instruction vector ID3 Address match vector ID4 Single step vector ID5 Watchdog timer vector ID6 DBC vector ID7 NMI vector Reset vector
4 bytes
Figure 1.29.10. ID code store addresses
250
Mitsubishi microcomputers
M16C / 62 Group
Appendix Parallel I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Parallel I/O Mode
In this mode, the M16C/62 (flash memory version) operates in a manner similar to the flash memory M5M29FB/T800 from Mitsubishi. Since there are some differences with regard to the functions not available with the microcomputer and matters related to memory capacity, the M16C/62 cannot be programed by a programer for the flash memory. Use an exclusive programer supporting M16C/62 (flash memory version). Refer to the instruction manual of each programer maker for the details of use.
User ROM and Boot ROM Areas
In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 1.28.1 can be rewritten. Both areas of flash memory can be operated on in the same way. Program and block erase operations can be performed in the user ROM area. The user ROM area and its blocks are shown in Figure 1.28.1. The boot ROM area is 8 Kbytes in size. In parallel I/O mode, it is located at addresses 0FE00016 through 0FFFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.) In the boot ROM area, an erase block operation is applied to only one 8 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the Mitsubishi factory. Therefore, using the device in standard serial input/output mode, you do not need to write to the boot ROM area.
251
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
Pin functions (Flash memory standard serial I/O mode)
Pin VCC,VSS CNVSS RESET XIN XOUT BYTE AVCC, AVSS VREF P00 to P07 P10 to P17 P20 to P27 P30 to P37 P40 to P47 P51 to P54, P56, P57 P50 P55 P60 to P63 P64 P65 P66 P67 P70 to P77 P80 to P84, P86, P87 P85 P90 to P97 P100 to P107 Name Power input CNVSS Reset input I I I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Description Apply program/erase protection voltage to Vcc pin and 0 V to Vss pin. Connect to Vcc pin. Reset input pin. While reset is "L" level, a 20 cycle or longer clock must be input to XIN pin. Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin. Connect this pin to Vcc or Vss. Connect AVSS to Vss and AVcc to Vcc, respectively.
Clock input Clock output BYTE Analog power supply input Reference voltage input Input port P0 Input port P1 Input port P2 Input port P3 Input port P4 Input port P5 CE input EPM input Input port P6 BUSY output SCLK input RxD input TxD output Input port P7 Input port P8 NMI input Input port P9 Input port P10
I O I
I I I I I I I I I I O I I O I I I I I
Enter the reference voltage for AD from this pin. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" level signal. Input "L" level signal. Input "H" or "L" level signal or open. BUSY signal output pin Serial clock input pin Serial data input pin Serial data output pin Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Connect this pin to Vcc. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open.
252
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P10/D8 P11/D9 P12/D10 P13/D11 P14/D12 P15/D13/INT3 P16/D14/INT4 P17/D15/INT5 P20/A0(/D0/-) P21/A1(/D1/D0) P22/A2(/D2/D1) P23/A3(/D3/D2) P24/A4(/D4/D3) P25/A5(/D5/D4) P26/A6(/D6/D5) P27/A7(/D7/D6) Vss P30/A8(/-/D7) Vcc P31/A9 P32/A10 P33/A11 P34/A12 P35/A13 P36/A14 P37/A15 P40/A16 P41/A17 P42/A18 P43/A19
P07/D7 P06/D6 P05/D5 P04/D4 P03/D3 P02/D2 P01/D1 P00/D0 P107/AN7/KI3 P106/AN6/KI2 P105/AN5/KI1 P104/AN4/KI0 P103/AN3 P102/AN2 P101/AN1 AVSS P100/AN0 VREF AVcc P97/ADTRG/SIN4
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 1 00 1 2345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
50 49 48 47 46 45 44 43
M16C/62 flash memory version (100P6S)
42 41 40 39 38 37 36 35 34 33 32 31
P44/CS0 P45/CS1 P46/CS2 P47/CS3 P50/WRL/WR P51/WRH/BHE P52/RD P53/BCLK P54/HLDA P55/HOLD P56/ALE P57/RDY/CLKOUT P60/CTS0/RTS0 P61/CLK0 P62/RxD0 P63/TXD0 P64/CTS1/RTS1/CTS0/CLKS1 P65/CLK1 P66/RxD1 P67/TXD1
CE
EPM
BUSY SCLK RxD TxD
Vss
P96/ANEX1/SOUT4 P95/ANEX0/CLK4 P94/DA1/TB4IN P93/DA0/TB3IN P92/TB2IN/SOUT3 P91/TB1IN/SIN3 P90/TB0IN/CLK3 BYTE CNVss P87/XCIN P86/XCOUT RESET XOUT VSS XIN VCC P85/NMI P84/INT2 P83/INT1 P82/INT0 P81/TA4IN/U P80/TA4OUT/U P77/TA3IN P76/TA3OUT P75/TA2IN/W P74/TA2OUT/W P73/CTS2/RTS2/TA1IN/V P72/CLK2/TA1OUT/V P71/RxD2/SCL/TA0IN/TB5IN P70/TXD2/SDA/TA0OUT
Vcc
Mode setup method Value Signal CNVss Vcc EPM Vss RESET Vss to Vcc CE Vcc
Figure 1.31.1. Pin connections for serial I/O mode (1)
RESET
CNVss
Connect oscillator circuit.
253
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
P12/D10 P11/D9 P10/D8 P07/D7 P06/D6 P05/D5 P04/D4 P03/D3 P02/D2 P01/D1 P00/D0 P107/AN7/KI3 P106/AN6/KI2 P105/AN5/KI1 P104/AN4/KI0 P103/AN3 P102/AN2 P101/AN1 AVSS P100/AN0 VREF AVcc P97/ADTRG/SIN4 P96/ANEX1/SOUT4 P95/ANEX0/CLK4
P13/D11 P14/D12 P15/D13/INT3 P16/D14/INT4 P17/D15/INT5 P20/A0(/D0/-) P21/A1(/D1/D0) P22/A2(/D2/D1) P23/A3(/D3/D2) P24/A4(/D4/D3) P25/A5(/D5/D4) P26/A6(/D6/D5) P27/A7(/D7/D6) Vss P30/A8(/-/D7) Vcc P31/A9 P32/A10 P33/A11 P34/A12 P35/A13 P36/A14 P37/A15 P40/A16 P41/A17
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
M16C/62 flash memory version (100P6Q)
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
P42/A18 P43/A19 P44/CS0 P45/CS1 P46/CS2 P47/CS3 P50/WRL/WR P51/WRH/BHE P52/RD P53/BCLK P54/HLDA P55/HOLD P56/ALE P57/RDY/CLKOUT P60/CTS0/RTS0 P61/CLK0 P62/RxD0 P63/TXD0 P64/CTS1/RTS1/CTS0/CLKS1 P65/CLK1 P66/RxD1 P67/TXD1 P70/TXD2/SDA/TA0OUT P71/RxD2/SCL/TA0IN/TB5IN P72/CLK2/TA1OUT/V
CE
EPM
BUSY SCLK RXD TXD
12345678
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
RESET XOUT VSS XIN VCC P85/NMI P84/INT2 P83/INT1 P82/INT0 P81/TA4IN/U P80/TA4OUT/U P77/TA3IN P76/TA3OUT P75/TA2IN/W P74/TA2OUT/W P73/CTS2/RTS2/TA1IN/V
P94/DA1/TB4IN P93/DA0/TB3IN P92/TB2IN/SOUT3 P91/TB1IN/SIN3 P90/TB0IN/CLK3 BYTE CNVss P87/XCIN P86/XCOUT
VSS
VCC
Mode setup method Signal Value CNVss Vcc EPM Vss RESET Vss to Vcc CE Vcc
RESET CNVSS
Connect oscillator circuit.
Figure 1.31.2. Pin connections for serial I/O mode (2)
254
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Standard Serial I/O Mode
The standard serial I/O mode serially inputs and outputs the software commands, addresses and data necessary for operating (read, program, erase, etc.) the internal flash memory. It uses a purpose-specific peripheral unit. The standard serial I/O mode differs from the parallel I/O mode in that the CPU controls operations like rewriting (uses the CPU rewrite mode) in the flash memory or serial input for rewriting data. The standard _____ serial I/O mode is started by clearing the reset with an "H" level signal at the P50 (CE) pin, an "L" signal at ________ the P55 (EPM) pin and an "H" level at the CNVss pin. (For the normal microprocessor mode, set CNVss to "L".) This control program is written in the boot ROM area when shipped from Mitsubishi Electric. Therefore, if the boot ROM area is rewritten in the parallel I/O mode, the standard serial I/O mode cannot be used. Figures 1.31.1 and 1.31.2 show the pin connections for the standard serial I/O mode. Serial data I/O uses four UART1 pins: CLK1, RxD1, TxD1 and RTS1 (BUSY). The CLK1 pin is the transfer clock input pin and it inputs the external transfer clock. The TxD1 pin outputs the CMOS signal. The RTS1 (BUSY) pin outputs an "L" level when reception setup ends and an "H" level when the reception operation starts. Transmission and reception data is transferred serially in 8-byte blocks. In the standard serial I/O mode, only the user ROM area shown in Figure 1.31.1 can be rewritten, the boot ROM area cannot. The standard serial I/O mode has a 7-byte ID code. When the flash memory is not blank and the ID code does not match the content of the flash memory, the command sent from the peripheral unit (programmer) is not accepted.
Function Overview (Standard Serial I/O Mode)
In the standard serial I/O mode, software commands, addresses and data are input and output between the flash memory and an external device (peripheral unit, etc.) using a 4-wire clock synchronized serial I/ O (UART1). In reception, the software commands, addresses and program data are synchronized with the rise of the transfer clock input to the CLK1 pin and input into the flash memory via the RxD1 pin. In transmission, the read data and status are synchronized with the fall of the transfer clock and output to the outside from the TxD1 pin. The TxD1 pin is CMOS output. Transmission is in 8-bit blocks and LSB first. When busy, either during transmission or reception, or while executing an erase operation or program, the RTS1 (BUSY) pin is "H" level. Accordingly, do not start the next transmission until the RTS1 (BUSY) pin is "L" level. Also, data in memory and the status register can be read after inputting a software command. It is possible to check flash memory operating status or whether a program or erase operation ended successfully or in error by reading the status register. Software commands and the status register are explained here following.
255
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version) Software Commands
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.31.1 lists software commands. In the standard serial I/O mode, erase operations, programs and reading are controlled by transferring software commands via the RxD pin. Software commands are explained here below. Table 1.31.1. Software commands (Standard serial I/O mode)
Control command 1 Page read FF16 2nd byte Address (middle) 3rd byte Address (high) 4th byte 5th byte 6th byte Data output Data output Data output Data output to 259th byte Data input to 259th byte When ID is not verificate Not acceptable
2
Page program
4116
Address (middle) Address (middle) D0 16 SRD output
Address (high) Address (high)
Data input D016
Data input
Data input
Not acceptable Not acceptable Not acceptable Acceptable Not acceptable Not acceptable Not acceptable Not acceptable Not acceptable Acceptable
3 4 5 6 7
Block erase Erase all unlocked blocks Read status register Clear status register Read lockbit status
2016 A716 7016 5016 7116
SRD1 output
Address (middle) Address (middle)
Address (high) Address (high)
8 9
Lockbit program Lockbit enable
Lock bit data output D016
7716 7A16 7516 F516 FA 16
10 Lockbit disable 11 ID check function 12 Download function
Address (low) Size (low)
Address (middle) Size (high)
Address (high) Checksum
ID size Data input
ID1
To ID7
13 Version data output function FB 16
14 Boot area output function
FC 16
Version data output Address (middle)
Version data output Address (high)
Version data output Data output
To Not required acceptable number of times Version Version Version Acceptable data data data output output output to 9th byte Data Data Data Not output to acceptable output output 259th byte
Note1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer. Note2: SRD refers to status register data. SRD1 refers to status register 1 data. Note3: All commands can be accepted when the flash memory is totally blank.
256
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Page Read Command This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following. (1) Send the "FF16" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) From the 4th byte onward, data (D0-D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
FF16
A8 to A15
A16 to A23
data0
data255
Figure 1.31.3. Timing for page read Read Status Register Command This command reads status information. When the "7016" command code is sent in the 1st byte of the transmission, the contents of the status register (SRD) specified in the 2nd byte of the transmission and the contents of status register 1 (SRD1) specified in the 3rd byte of the transmission are read.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
7016
SRD output
SRD1 output
Figure 1.31.4. Timing for reading the status register
257
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clear Status Register Command This command clears the bits (SR3-SR5) which are set when the status register operation ends in error. When the "5016" command code is sent in the 1st byte of the transmission, the aforementioned bits are cleared. When the clear status register operation ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
5016
Figure 1.31.5. Timing for clearing the status register
Page Program Command This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following. (1) Send the "4116" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) From the 4th byte onward, as write data (D0-D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written. When reception setup for the next 256 bytes ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the page program can be known by reading the status register. For more information, see the section on the status register. Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
4116
A8 to A16 to data0 A15 A23
data255
Figure 1.31.6. Timing for the page program
258
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Block Erase Command This command erases the data in the specified block. Execute the block erase command as explained here following. (1) Send the "2016" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) Send the verify command code "D016" in the 4th byte of the transmission. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23. When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register. Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
2016
A8 to A15
A16 to A23
D016
Figure 1.31.7. Timing for block erasing
259
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Erase All Unlocked Blocks Command This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following. (1) Send the "A716" command code in the 1st byte of the transmission. (2) Send the verify command code "D016" in the 2nd byte of the transmission. With the verify command code, the erase operation will start and continue for all blocks in the flash memory. When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the erase operation can be known by reading the status register. Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function. CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
A716
D016
Figure 1.31.8. Timing for erasing all unlocked blocks Lock Bit Program Command This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following. (1) Send the "7716" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) Send the verify command code "D016" in the 4th byte of the transmission. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23. When writing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
7716
A8 to A15
A16 to A23
D016
Figure 1.31.9. Timing for the lock bit program
260
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Read Lock Bit Status Command This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following. (1) Send the "7116" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) The lock bit data of the specified block is output in the 4th byte of the transmission. Write the highest address of the specified block for addresses A8 to A23.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
7116
A8 to A15
A16 to A23
DQ6
Figure 1.31.10. Timing for reading lock bit status
Lock Bit Enable Command This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent in the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
7A16
Figure 1.31.11. Timing for enabling the lock bit
261
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Lock Bit Disable Command This command disables the lock bit. The command code "7516" is sent in the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
7516
Figure 1.31.12. Timing for disabling the lock bit Download Command This command downloads a program to the RAM for execution. Execute the download command as explained here following. (1) Send the "FA16" command code in the 1st byte of the transmission. (2) Send the program size in the 2nd and 3rd bytes of the transmission. (3) Send the check sum in the 4th byte of the transmission. The check sum is added to all data sent in the 5th byte onward. (4) The program to execute is sent in the 5th byte onward. When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
FA16
Data size (low)
Check sum
Program data
Program data
Data size (high)
Figure 1.31.13. Timing for download
262
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Version Information Output Command This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following. (1) Send the "FB16" command code in the 1st byte of the transmission. (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
FB16
'V'
'E'
'R'
'X'
Figure 1.31.14. Timing for version information output
Boot Area Output Command This command outputs the control program stored in the boot area in one page blocks (256 bytes). Execute the boot area output command as explained here following. (1) Send the "FC16" command code in the 1st byte of the transmission. (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively. (3) From the 4th byte onward, data (D0-D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
FC16
A8 to A15
A16 to A23
data0
data255
Figure 1.31.15. Timing for boot area output
263
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ID Check This command checks the ID code. Execute the boot ID check command as explained here following. (1) Send the "F516" command code in the 1st byte of the transmission. (2) Send addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code in the 2nd, 3rd and 4th bytes of the transmission respectively. (3) Send the number of data sets of the ID code in the 5th byte. (4) The ID code is sent in the 6th byte onward, starting with the 1st byte of the code.
CLK1
RxD1 (M16C reception data) TxD1 (M16C transmit data) RTS1(BUSY)
F516
DF16
FF16
0F16
ID size
ID1
ID7
Figure 1.31.16. Timing for the ID check
ID Code When the flash memory is not blank, the ID code sent from the peripheral unit and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral unit is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716 and 0FFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.
Address 0FFFDC16 to 0FFFDF16 0FFFE016 to 0FFFE316 0FFFE416 to 0FFFE716 0FFFE816 to 0FFFEB16 0FFFEC16 to 0FFFEF16 0FFFF016 to 0FFFF316 0FFFF416 to 0FFFF716 0FFFF816 to 0FFFFB16 0FFFFC16 to 0FFFFF16 ID1 Undefined instruction vector ID2 Overflow vector BRK instruction vector ID3 Address match vector ID4 Single step vector ID5 Watchdog timer vector ID6 DBC vector ID7 NMI vector Reset vector
4 bytes
Figure 1.31.17. ID code storage addresses
264
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Data Protection (Block Lock)
Each of the blocks in Figure 1.30.1 have a nonvolatile lock bit that specifies protection (block lock) against erasing/writing. A block is locked (writing "0" for the lock bit) with the lock bit program command. Also, the lock bit of any block can be read with the read lock bit status command. Block lock disable/enable is determined by the status of the lock bit itself and execution status of the lock bit disable and lock enable bit commands. (1) After the reset has been cancelled and the lock bit enable command executed, the specified block can be locked/unlocked using the lock bit (lock bit data). Blocks with a "0" lock bit data are locked and cannot be erased or written in. On the other hand, blocks with a "1" lock bit data are unlocked and can be erased or written in. (2) After the lock bit enable command has been executed, all blocks are unlocked regardless of lock bit data status and can be erased or written in. In this case, lock bit data that was "0" before the block was erased is set to "1" (unlocked) after erasing, therefore the block is actually unlocked with the lock bit.
0C000016 Block 6 : 64K byte
0D000016 Block 5 : 64K byte
0E000016 Block 4 : 64K byte
Flash memory Flash memory size start address 256K byte 0C000016
0F000016 0F800016 0FA00016 0FC00016 0FFFFF16
Block 3 : 32K byte Block 2 : 8K byte Block 1 : 8K byte Block 0 : 16K byte User ROM area
Figure 1.31.18. Blocks in the user area
265
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Status Register (SRD)
The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016). Table 1.31.2 gives the definition of each status register bit. After clearing the reset, the status register outputs "8016". Table 1.31.2. Status register (SRD) SRD0 bits SR7 (bit7) SR6 (bit6) SR5 (bit5) SR4 (bit4) SR3 (bit3) SR2 (bit2) SR1 (bit1) SR0 (bit0) Status name Write state machine (WSM) status Reserved Erase status Program status Block status after program Reserved Reserved Reserved Definition "1" Ready Terminated in error Terminated in error Terminated in error "0" Busy Terminated normally Terminated normally Terminated normally -
Write State Machine (WSM) Status (SR7) The write state machine (WSM) status indicates the operating status of the flash memory. When power is turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation, but it is set back to "1" when the operation ends. Erase Status (SR5) The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0". Program Status (SR4) The program status reports the operating status of the auto write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0".
266
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Program Status After Program (SR3) If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output. If "1" is written for any of the SR5, SR4 or SR3 bits, the page program, block erase, erase all unlocked blocks and lock bit program commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register.
267
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Status Register 1 (SRD1)
Status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the SRD by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016). Table 1.31.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and the flag status is maintained even after the reset. Table 1.31.3. Status register 1 (SRD1) SRD1 bits SR15 (bit7) SR14 (bit6) SR13 (bit5) SR12 (bit4) SR11 (bit3) SR10 (bit2) Status name Boot update completed bit Reserved Reserved Checksum match bit ID check completed bits Definition "1" Update completed Match 00 01 10 11 Time out "0" Not update Mismatch Not verified Verification mismatch Reserved Verified Normal operation -
SR9 (bit1) SR8 (bit0)
Data receive time out Reserved
Boot Update Completed Bit (SR15) This flag indicates whether the control program was downloaded to the RAM or not, using the download function. Check Sum Consistency Bit (SR12) This flag indicates whether the check sum matches or not when a program, is downloaded for execution using the download function. ID Check Completed Bits (SR11 and SR10) These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check. Data Reception Time Out (SR9) This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the microcomputer returns to the command wait state.
268
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Full Status Check
Results from executed erase and program operations can be known by running a full status check. Figure 1.31.19 shows a flowchart of the full status check and explains how to remedy errors which occur.
Read status register
YES SR4=1 and SR5 =1 ? NO SR5=0? YES SR4=0? YES NO NO
Command sequence error
Execute the clear status register command (5016) to clear the status register. Try performing the operation one more time after confirming that the command is entered correctly. Should a block erase error occur, the block in error cannot be used.
Block erase error
Program error (page or lock bit)
Execute the read lock bit status command (7116) to see if the block is locked. After removing lock, execute write operation in the same way. If the error still occurs, the page in error cannot be used. After erasing the block in error, execute write operation one more time. If the same error still occurs, the block in error cannot be used.
SR3=0? YES
NO
Program error (block)
End (block erase, program)
Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase, erase all unlock blocks and lock bit program commands is accepted. Execute the clear status register command (5016) before executing these commands.
Figure 1.31.19. Full status check flowchart and remedial procedure for errors
269
Mitsubishi microcomputers
M16C / 62 Group
Appendix Standard Serial I/O Mode (Flash Memory Version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Example Circuit Application for The Standard Serial I/O Mode
The below figure shows a circuit application for the standard serial I/O mode. Control pins will vary according to peripheral unit (programmer), therefore see the peripheral unit (programmer) manual for more information.
Clock input BUSY output Data input Data output
CLK1 RTS1(BUSY) RXD1 TXD1
M16C/62 flash memory version
CNVss NMI
P50(CE) P55(EPM)
(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more information, see the peripheral unit (programmer) manual. (2) In this example, the microprocessor mode and standard serial I/O mode are switched via a switch.
Figure 1.31.20. Example circuit application for the standard serial I/O mode
270
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Differences between M30622MC and M30612MC
Type Name Memory space M30622MC Memory expansion is possible 1.2M bytes mode 4M bytes mode 6 channels UART/clocked SI/O * * * * * 3 channel Clocked SI/O * * * * * * * * * * 2 channel UART2 used IIC bus interface can be performed with software P90 * * * * * TB0IN/CLK3 P91 * * * * * TB1IN/SIN3 P92 * * * * * TB2IN/SOUT3 P93 * * * * * TB3IN/DA0 P94 * * * * * TB4IN/DA1 P95 * * * * * ANEX0/CLK4 P96 * * * * * ANEX1/SOUT4 P97 * * * * * ADTRG/SIN4 P15 * * * * * D13/INT3 P16 * * * * * D14/INT4 P17 * * * * * D15/INT5 P71 * * * * * RXD2/TA0IN/TB5IN Internal 25 sources External 8 sources Software 4 sources (Added two Serial I/O, three timers and 3external interrupts) M30612MC type and the type as below can be switched (Besides 4M-byte mode is possible.) CS0 : 0400016 to 3FFFF16 (fetch) 4000016 to FFFFF16 (data/facth) CS1 : 2800016 to 2FFFF16 (data) CS2 : 0800016 to 27FFF16 (data) CS3 : 0400016 to 07FFF16 (data) PWM output for three-phase inverter can be performed using timer A4, A1 and A2. Output port is arranged to P72 to P75, P80 and P81. By setting to register, the state of port register can be read always. 1M byte fixed M30612MC
Timer B Serial I/O IIC bus mode
3 channels UART/clocked SI/O * * * * * 3 channels Impossible
Port function
P90 * * * * * TB0IN P91 * * * * * TB1IN P92 * * * * * TB2IN P93 * * * * * DA0 P94 * * * * * DA1 P95 * * * * * ANEX0 P96 * * * * * ANEX1 P97 * * * * * ADTRG P15 * * * * * D13 P16 * * * * * D14 P17 * * * * * D15 P71 * * * * * RXD2/TA0IN Internal 20 sources External 5 sources Software 4 sources
Interrupt cause
Chip select
CS0 : 3000016 to FFFFF16 CS1 : 2800016 to 2FFFF16 CS2 : 0800016 to 27FFF16 CS3 : 0400016 to 07FFF16
Three-phase inverter control circuit
Impossible
Read port P1
The state of port when input mode. The state of port register when output mode. Bit 2 (PU11) of the pull-up control register 1 turns to "0" when reset, and P44/ CS0 - P47/ CS3 turn free from pullup.
P44/CS0 - P47/CS3 pin pull-up resistors
If a Vcc level is applied to the CNVss pin, bit 2 (PU11) of pull-up control register 1 turns to "1" when reset, and P44/ CS0 - P47/ CS3 turn involved in pull-up.
271
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
272
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Revision History
Version Contents for change Page 8 CNVSS pin function Line 1 Page 8 BYTE pin function Line 1 Page 10 Figure 1.4.1 Add Note 3 Page 18 to 20 Figure 1.7.1 to Figure 1.7.3 Add to " Note : Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write. "
________
Revision date 99.11.2
REV.H2
Page 44 Table 1.13.2 BHE Status
________
Page 45 Table 1.13.3 BHE Status Page 62 Interrupt Line 6 Page 67 Address Match Interrupt Line 6 Page 117, 123, 130 UARTi Transmit/receive Mode Register Bit 3 (Internal/external Clock Select Bit) Function Page 146 Line 5
Bit 1 of the UART2 special mode register 2 (address 036716) -->Bit 1 of the UART2 special mode register 2 (address 037616)
Page 175 Table 1.23.2 and Figure 1.23.10 BCLK pin connection Page 234 Flash memory Version Table 1.28.1 3V version: 2.4V to 3.6V (The bottom aim is 2.2V) -->3V version: 2.4V to 3.6V REV.H3 Page 3
__
99.11.25
P81/TA4IN/U --> P81/TA4IN/U __ P80/TA4OUT/U --> P80/TA4OUT/U REV.H4 Page 150 Note 2 * Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the low state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTi initial value set bit), make sure the CLKi pin input is held low. ---> * Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the high state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTi initial value set bit), make sure the CLKi pin input is held high. 99.12.21
Revision history
M16C/62 Group data sheet
273
Mitsubishi microcomputers
M16C / 62 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Version
Contents for change Page 34, Table 1.12.2
_______
Revision date 00.7.4
REV.H5
Normal mode, microprocessor mode, CS0 area 0300016 to FFFFF16 --->3000016 to FFFFF16
_______
Expansion mode 1, microprocessor mode, PM13=1, CS0 area 0600016 to FFFFF16 --->0600016 to BFFFF16 Page 49, Figure 1.13.6 Note: Writing a value to an address after "1" is written to this bit returns the bit to "0" . Other bits do not automatically return to "0" and they must therefore be reset by the program. Page 149, Figure 1.19.32, bit 5 of the SI/Oi control register (i=3, 4) Transfer direction lect bit --->Transfer direction select bit Page 149, Figure 1.19.32, Note 2 When using the port as an input/output port by setting the SI/Oi port select bit (i = 3, 4) to "1", be sure to set the sync clock select bit to "1". ---> When using the port as an input/output port by setting the SI/Oi port select bit (i = 3, 4) to "0", be sure to set the sync clock select bit to "1". Page 198, Table 1.26.23, tCONV 9.8 (Min) VCC(Max) --->9.8 (Min)
Revision history
M16C/62 Group data sheet
274
Keep safety first in your circuit designs!
q
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
q
q
q
q
q
q q
q
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http:// www.mitsubishichips.com). When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.
MITSUBISHI SEMICONDUCTORS M16C/62 Group Specification REV.H5 July. First Edition 2000 Editioned by Committee of editing of Mitsubishi Semiconductor Published by Mitsubishi Electric Corp., Kitaitami Works
This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. (c)2000 MITSUBISHI ELECTRIC CORPORATION


▲Up To Search▲   

 
Price & Availability of M30620ECFP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X